WorldCat Identities

United States Office of Nuclear Energy, Science, and Technology

Overview
Works: 2,096 works in 2,133 publications in 1 language and 10,628 library holdings
Genres: Periodicals 
Roles: Sponsor, Researcher
Classifications: TK9202, 621.4830973
Publication Timeline
.
Most widely held works by United States
Annual report by Nuclear Energy Research Initiative (U.S.)( )

in English and held by 248 WorldCat member libraries worldwide

Annual report by International Nuclear Energy Research Initiative (U.S.)( )

in English and held by 223 WorldCat member libraries worldwide

Thermal stability of the microstructure of an aged Nb-Zr-C alloy by Mehmet Uz( )

1 edition published in 1990 in English and held by 205 WorldCat member libraries worldwide

University currents( )

in English and held by 203 WorldCat member libraries worldwide

Nuclear reactors built, being built, or planned in the United States as of( )

in English and held by 130 WorldCat member libraries worldwide

Improving the safety of Soviet-designed nuclear power plants : status report( )

2 editions published in 1996 in English and held by 15 WorldCat member libraries worldwide

Advanced Fuel Cycle Cost Basis( )

3 editions published between 2007 and 2009 in English and held by 15 WorldCat member libraries worldwide

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules--23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste
Remote-Handled Low Level Waste Disposal Project Alternatives Analysis( )

3 editions published between 2009 and 2011 in English and held by 13 WorldCat member libraries worldwide

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy's mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site
Annual report by International Nuclear Energy Research Initiative (U.S.)( )

in English and held by 13 WorldCat member libraries worldwide

CFD Analysis of Core Bypass Phenomena( )

2 editions published between 2009 and 2010 in English and held by 10 WorldCat member libraries worldwide

The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary
Evaluation of the start-up core physics tests at Japan's high temperature engineering test reactor (fully-loaded core)( )

2 editions published between 2009 and 2010 in English and held by 10 WorldCat member libraries worldwide

PEBBLES Operation and Theory Manual( )

2 editions published between 2010 and 2011 in English and held by 10 WorldCat member libraries worldwide

The PEBBLES manual describes the PEBBLES code. The PEBBLES code is a computer program designed to simulation the motion, packing and vibration of spheres that undergo various mechanical forces including gravitation, Hooke's law force and various friction forces. The frictional forces include true static friction that allows non-zero angles of repose. Each pebble is individually simulated using the distinct element method
NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities( )

2 editions published between 2010 and 2011 in English and held by 9 WorldCat member libraries worldwide

Projects for the Very High Temperature Reactor Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The Very High Temperature Reactor Technology Development Office has established the NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory to ensure that very high temperature reactor data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities
Graphite Technology Development Plan( )

2 editions published between 2007 and 2010 in English and held by 9 WorldCat member libraries worldwide

This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R & D. Finally, the variables affecting this R & D program are discussed from a general perspective. Factors that can significantly affect the R & D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed
Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project( )

2 editions published between 2010 and 2011 in English and held by 9 WorldCat member libraries worldwide

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives
AGC-2 Graphite Pre-irradiation Data Package( )

2 editions published between 2010 and 2012 in English and held by 9 WorldCat member libraries worldwide

The NGNP Graphite R & D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule
Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications( )

2 editions published between 2009 and 2011 in English and held by 9 WorldCat member libraries worldwide

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations
Idaho National Laboratory's Greenhouse Gas FY08 Baseline( )

2 editions published between 2010 and 2011 in English and held by 9 WorldCat member libraries worldwide

A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: Electricity is the largest contributor to INL's GHG inventory, with over 50% of the net anthropogenic CO2e emissions Other sources with high emissions were stationary combustion, fugitive emissions from the onsite landfill, mobile combustion (fleet fuels) and the employee commute Sources with low emissions were contracted waste disposal, wastewater treatment (onsite and contracted) and fugitive emissions from refrigerants. This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to stress that the methodology behind this inventory followed guidelines that have not yet been formally adopted. Thus, some modification of the conclusions may be necessary as additional guidance is received. Further, because this report differentiates between those portions of the INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.51 (from 0.28 for Strategic ... to 1.00 for Advanced F ...)

Alternative Names

controlled identityUnited States. Department of Energy

United States. Department of Energy. Office of Nuclear Energy, Science, and Technology

Languages
English (47)