Coxeter, H. S. M. (Harold Scott Macdonald) 19072003
Overview
Works:  127 works in 864 publications in 11 languages and 18,967 library holdings 

Genres:  Biography Conference proceedings Criticism, interpretation, etc Art Documentary films History Software 
Roles:  Author, Editor, Honoree, Dedicatee, Author of introduction, Publishing director 
Classifications:  QA95, 513 
Publication Timeline
.
Most widely held works about
H. S. M Coxeter
 King of infinite space : Donald Coxeter, the man who saved geometry by Siobhan Roberts( Book )
 The Coxeter legacy : reflections and projections( Book )
 Tamentai to uchū no nazo ni sematta kikagakusha by Siobhan Roberts( Book )
 Solid progress how five regular solids turned into seventyfive by H. Stephen Morse( Recording )
 Dedicated to H.S.M. Coxeter, cofounder of this journal( Book )
 Vandiver, H.S., Papers by Harry Schultz Vandiver( )
 Martin Gardner papers by Martin Gardner( )
 Coxeter, Harold Scott Macdonald: Mathematics( )
more
fewer
Most widely held works by
H. S. M Coxeter
Introduction to geometry by
H. S. M Coxeter(
Book
)
102 editions published between 1961 and 2013 in 8 languages and held by 2,269 WorldCat member libraries worldwide
This classic work is now available in an unabridged paperback edition. The Second Edition retains all the characterisitcs that made the first edition so popular: brilliant exposition, the flexibility permitted by relatively selfcontained chapters, and broad coverage ranging from topics in the Euclidean plane, to affine geometry, projective geometry, differential geometry, and topology. The Second Edition incorporates improvements in the text and in some proofs, takes note of the solution of the 4color map problem, and provides answers to most of the exercises
102 editions published between 1961 and 2013 in 8 languages and held by 2,269 WorldCat member libraries worldwide
This classic work is now available in an unabridged paperback edition. The Second Edition retains all the characterisitcs that made the first edition so popular: brilliant exposition, the flexibility permitted by relatively selfcontained chapters, and broad coverage ranging from topics in the Euclidean plane, to affine geometry, projective geometry, differential geometry, and topology. The Second Edition incorporates improvements in the text and in some proofs, takes note of the solution of the 4color map problem, and provides answers to most of the exercises
NonEuclidean geometry by
H. S. M Coxeter(
Book
)
80 editions published between 1941 and 2014 in English and Undetermined and held by 1,878 WorldCat member libraries worldwide
The MAA is delighted to be the publisher of the sixth edition of this book, updated with a new section 15.9 on the author's useful concept of inversive distance. Throughout most of this book, nonEuclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Transformations that preserve incidence are called colineations. They lead in a natural way to elliptic isometries or "congruent transformations". Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa. This treatment can be enjoyed by anyone who is familiar with algebra up to the elements of group theory.  Publisher
80 editions published between 1941 and 2014 in English and Undetermined and held by 1,878 WorldCat member libraries worldwide
The MAA is delighted to be the publisher of the sixth edition of this book, updated with a new section 15.9 on the author's useful concept of inversive distance. Throughout most of this book, nonEuclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Transformations that preserve incidence are called colineations. They lead in a natural way to elliptic isometries or "congruent transformations". Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa. This treatment can be enjoyed by anyone who is familiar with algebra up to the elements of group theory.  Publisher
Geometry revisited by
H. S. M Coxeter(
Book
)
64 editions published between 1967 and 2012 in 6 languages and held by 1,488 WorldCat member libraries worldwide
The chief purpose of this book is to revisit those regions of elementary geometry that were enjoyed by our ancestors, making use of the idea of transformations: an idea that facilitates geometric understanding and links the subject with other branches of mathematics. In particular, Chapter 5 introduces the reader to inversive geometry, which has an important application to analysis, and Chapter 6 introduces conics with special emphasis on the notions of focus and eccentricity, notions obviously relevant to the study of orbits of comets, planets, and satellites. The early chapters take the reader by easy stages from very simple ideas to the core of the subject. The problems throughout the book contain extensions of the text as well as challenges to the reader
64 editions published between 1967 and 2012 in 6 languages and held by 1,488 WorldCat member libraries worldwide
The chief purpose of this book is to revisit those regions of elementary geometry that were enjoyed by our ancestors, making use of the idea of transformations: an idea that facilitates geometric understanding and links the subject with other branches of mathematics. In particular, Chapter 5 introduces the reader to inversive geometry, which has an important application to analysis, and Chapter 6 introduces conics with special emphasis on the notions of focus and eccentricity, notions obviously relevant to the study of orbits of comets, planets, and satellites. The early chapters take the reader by easy stages from very simple ideas to the core of the subject. The problems throughout the book contain extensions of the text as well as challenges to the reader
Mathematical recreations & essays by
W. W. Rouse Ball(
Book
)
63 editions published between 1939 and 2009 in 5 languages and held by 1,328 WorldCat member libraries worldwide
This classic work offers scores of stimulating, mindexpanding games and puzzles: arithmetical and geometrical problems, chessboard recreations, magic squares, mapcoloring problems, cryptography and cryptanalysis, much more
63 editions published between 1939 and 2009 in 5 languages and held by 1,328 WorldCat member libraries worldwide
This classic work offers scores of stimulating, mindexpanding games and puzzles: arithmetical and geometrical problems, chessboard recreations, magic squares, mapcoloring problems, cryptography and cryptanalysis, much more
Projective geometry by
H. S. M Coxeter(
Book
)
47 editions published between 1946 and 2003 in 3 languages and held by 1,283 WorldCat member libraries worldwide
In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a selfcontained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry
47 editions published between 1946 and 2003 in 3 languages and held by 1,283 WorldCat member libraries worldwide
In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a selfcontained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry
Generators and relations for discrete groups by
H. S. M Coxeter(
Book
)
69 editions published between 1957 and 1984 in 6 languages and held by 1,256 WorldCat member libraries worldwide
69 editions published between 1957 and 1984 in 6 languages and held by 1,256 WorldCat member libraries worldwide
The real projective plane by
H. S. M Coxeter(
Book
)
81 editions published between 1949 and 1993 in 4 languages and held by 1,240 WorldCat member libraries worldwide
Contain: Files, scenes, narrations, and projectivities for Mathematica
81 editions published between 1949 and 1993 in 4 languages and held by 1,240 WorldCat member libraries worldwide
Contain: Files, scenes, narrations, and projectivities for Mathematica
Regular polytopes by
H. S. M Coxeter(
Book
)
40 editions published between 1947 and 2012 in English and Undetermined and held by 1,164 WorldCat member libraries worldwide
Polytopes are geometrical figures bounded by portions of lines, planes, or hyperplanes. In plane (two dimensional) geometry, they are known as polygons and comprise such figures as triangles, squares, pentagons, etc. In solid (three dimensional) geometry they are known as polyhedra and include such figures as tetrahedra (a type of pyramid), cubes, icosahedra, and many more; the possibilities, in fact, are infinite! H. S. M. Coxeter's book is the foremost book available on regular polyhedra, incorporating not only the ancient Greek work on the subject, but also the vast amount of information that has been accumulated on them since, especially in the last hundred years. The author, professor of Mathematics, University of Toronto, has contributed much valuable work himself on polytopes and is a wellknown authority on them. Professor Coxeter begins with the fundamental concepts of plane and solid geometry and then moves on to multidimensionality. Among the many subjects covered are Euler's formula, rotation groups, starpolyhedra, truncation, forms, vectors, coordinates, kaleidoscopes, Petrie polygons, sections and projections, and starpolytopes. Each chapter ends with a historical summary showing when and how the information contained therein was discovered. Numerous figures and examples and the author's lucid explanations also help to make the text readily comprehensible. Although the study of polytopes does have some practical applications to mineralogy, architecture, linear programming, and other areas, most people enjoy contemplating these figures simply because their symmetrical shapes have an aesthetic appeal. But whatever the reasons, anyone with an elementary knowledge of geometry and trigonometry will find this one of the best source books available on this fascinating study
40 editions published between 1947 and 2012 in English and Undetermined and held by 1,164 WorldCat member libraries worldwide
Polytopes are geometrical figures bounded by portions of lines, planes, or hyperplanes. In plane (two dimensional) geometry, they are known as polygons and comprise such figures as triangles, squares, pentagons, etc. In solid (three dimensional) geometry they are known as polyhedra and include such figures as tetrahedra (a type of pyramid), cubes, icosahedra, and many more; the possibilities, in fact, are infinite! H. S. M. Coxeter's book is the foremost book available on regular polyhedra, incorporating not only the ancient Greek work on the subject, but also the vast amount of information that has been accumulated on them since, especially in the last hundred years. The author, professor of Mathematics, University of Toronto, has contributed much valuable work himself on polytopes and is a wellknown authority on them. Professor Coxeter begins with the fundamental concepts of plane and solid geometry and then moves on to multidimensionality. Among the many subjects covered are Euler's formula, rotation groups, starpolyhedra, truncation, forms, vectors, coordinates, kaleidoscopes, Petrie polygons, sections and projections, and starpolytopes. Each chapter ends with a historical summary showing when and how the information contained therein was discovered. Numerous figures and examples and the author's lucid explanations also help to make the text readily comprehensible. Although the study of polytopes does have some practical applications to mineralogy, architecture, linear programming, and other areas, most people enjoy contemplating these figures simply because their symmetrical shapes have an aesthetic appeal. But whatever the reasons, anyone with an elementary knowledge of geometry and trigonometry will find this one of the best source books available on this fascinating study
Regular complex polytopes by
H. S. M Coxeter(
Book
)
26 editions published between 1974 and 1991 in English and Undetermined and held by 819 WorldCat member libraries worldwide
26 editions published between 1974 and 1991 in English and Undetermined and held by 819 WorldCat member libraries worldwide
M.C. Escher, art and science : proceedings of the International Congress on M.C. Escher, Rome, Italy, 2628 March 1985 by International Congress on M.C. Escher(
Book
)
28 editions published between 1986 and 1988 in English and held by 636 WorldCat member libraries worldwide
28 editions published between 1986 and 1988 in English and held by 636 WorldCat member libraries worldwide
Twelve geometric essays by
H. S. M Coxeter(
Book
)
11 editions published in 1968 in English and held by 457 WorldCat member libraries worldwide
11 editions published in 1968 in English and held by 457 WorldCat member libraries worldwide
The fiftynine icosahedra by
H. S. M Coxeter(
Book
)
29 editions published between 1938 and 2011 in 4 languages and held by 401 WorldCat member libraries worldwide
29 editions published between 1938 and 2011 in 4 languages and held by 401 WorldCat member libraries worldwide
Twisted honeycombs by
H. S. M Coxeter(
Book
)
14 editions published between 1970 and 1971 in English and Undetermined and held by 366 WorldCat member libraries worldwide
14 editions published between 1970 and 1971 in English and Undetermined and held by 366 WorldCat member libraries worldwide
The Geometric vein : the Coxeter festschrift by
Chandler Davis(
Book
)
8 editions published in 1981 in English and held by 354 WorldCat member libraries worldwide
8 editions published in 1981 in English and held by 354 WorldCat member libraries worldwide
The fantastic world of M.C. Escher by
Michele Emmer(
Visual
)
2 editions published between 1994 and 2006 in English and held by 343 WorldCat member libraries worldwide
Through colleagues' accounts and computer animated recreations of his work, this documentary explores the genius of the Dutch graphic artist. Learn about the man behind the intricate and mysterious designs and his sources of inspiration for them
2 editions published between 1994 and 2006 in English and held by 343 WorldCat member libraries worldwide
Through colleagues' accounts and computer animated recreations of his work, this documentary explores the genius of the Dutch graphic artist. Learn about the man behind the intricate and mysterious designs and his sources of inspiration for them
Zerosymmetric graphs : trivalent graphical regular representations of groups by
H. S. M Coxeter(
Book
)
13 editions published in 1981 in English and Undetermined and held by 296 WorldCat member libraries worldwide
13 editions published in 1981 in English and Undetermined and held by 296 WorldCat member libraries worldwide
Kaleidoscopes : selected writings of H.S.M. Coxeter by
H. S. M Coxeter(
Book
)
10 editions published in 1995 in English and held by 220 WorldCat member libraries worldwide
10 editions published in 1995 in English and held by 220 WorldCat member libraries worldwide
The Coxeter legacy : reflections and projections(
Book
)
7 editions published between 2005 and 2006 in English and held by 196 WorldCat member libraries worldwide
This collection of essays on the legacy of mathematician Donald Coxeter is a mixture of surveys, updates, history, storytelling and personal memories covering both applied and abstract maths. Subjects include: polytopes, Coxeter groups, equivelar polyhedra, Ceva's theorum, and Coxeter and the artists
7 editions published between 2005 and 2006 in English and held by 196 WorldCat member libraries worldwide
This collection of essays on the legacy of mathematician Donald Coxeter is a mixture of surveys, updates, history, storytelling and personal memories covering both applied and abstract maths. Subjects include: polytopes, Coxeter groups, equivelar polyhedra, Ceva's theorum, and Coxeter and the artists
The beauty of geometry : twelve essays by
H. S. M Coxeter(
Book
)
10 editions published in 1999 in English and held by 134 WorldCat member libraries worldwide
10 editions published in 1999 in English and held by 134 WorldCat member libraries worldwide
The college geometry project(
Visual
)
1 edition published in 2008 in English and held by 86 WorldCat member libraries worldwide
Presents 12 films developed between 1965 and 1971 at the University of Minnesota which explain a broad range of topics
1 edition published in 2008 in English and held by 86 WorldCat member libraries worldwide
Presents 12 films developed between 1965 and 1971 at the University of Minnesota which explain a broad range of topics
more
fewer
Audience Level
0 

1  
Kids  General  Special 
Related Identities
 Greitzer, Samuel L.
 Moser, W. O. J.
 Ball, W. W. Rouse (Walter William Rouse) 18501925 Author
 Escher, M. C. (Maurits Cornelis) 18981972 Illustrator Honoree
 Roberts, Siobhan Author
 Davis, Chandler Editor
 Sherk, F. A. Editor
 Emmer, Michele
 Penrose, Roger
 Grünbaum, Branko Editor
Useful Links
Associated Subjects
Art and science Art in motion pictures Artists Astrology Bees Brauer, Richard, Canada Ciphers Combinatorial analysis Complexes Coxeter, H. S. M.(Harold Scott Macdonald), Coxeter groups Cryptography Discrete groups Escher, M. C.(Maurits Cornelis), Geometry Geometry, Algebraic Geometry, Modern Geometry, NonEuclidean Geometry, Projective Geometry, ProjectiveData processing GeometryFamous problems Geometry in art Graphic arts Graph theory Group theory Group theoryGenerators Group theoryRelations Hasse, Helmut, Hyperspace Icosahedra Italy Magic squares Mathematical recreations Mathematicians Mathematics Matter Netherlands Polyhedra Polytopes Printmakers Prints Representations of groups Space (Art) Space and time Spain String figures Symmetry (Art) Themes, motives United States
Alternative Names
Coexter, Harold Scott Macdonald
Coxeter, Donald
Coxeter, Donald 19072003
Coxeter, H.S.
Coxeter, H. S. M.
Coxeter, H. S. M. 19072003
Coxeter, H. S. M. (Harold Scott Macdonald), 19072003
Coxeter, Harold S. 19072003
Coxeter, Harold S. M.
Coxeter, Harold Scott Macdonald
Coxeter, Harold Scott Macdonald 1907
Coxeter, Harold Scott Macdonald 19072003
CoxeterMoser, ... 19072003
Donald Coxeter
H.S.M. Coxeter
Harold Coxeter matematico inglese
Harold Scott MacDonald Coxeter britischkanadischer Mathematiker
Harold Scott MacDonald Coxeter Canadian mathematician
Kokseter, G.
Kokseter, G. 19072003
Kokseter, G. S. M.
Kokseter, G.S.M. 19072003
Kokseter, G. S. Makdonal'd.
Kokseter, G. S. Makdonal'd 19072003
Kokster, Ch. S. M. 19072003
Kokster, G. S. M.
Kokster, H. S. M.
Коксетер, Гарольд
Коксетер, Гарольд С. М..
Кокстер, Г. С. М 19072003
Кокстер, Г. С. М. (Гарольд Скотт Макдональд), 19072003
Кокстер, Х. С. М..
Кокстер, Х. С. М 19072003
Кокстер, Х. С. М. (Х. Скотт Макдональд), 19072003
הרולד סקוט מקדונלד קוקסטר
سكوت ماكدونالد كوكستر
해럴드 스콧 맥도널드 콕서터
コークスター, H
コクセター
ハロルド・スコット・マクドナルド・コクセター
哈罗德斯科特麦克唐纳考克斯特
Languages
English
(599)
German (33)
Russian (18)
French (14)
Spanish (9)
Chinese (6)
Japanese (5)
Danish (1)
Italian (1)
Polish (1)
Germanic (1)
German (33)
Russian (18)
French (14)
Spanish (9)
Chinese (6)
Japanese (5)
Danish (1)
Italian (1)
Polish (1)
Germanic (1)
Covers