WorldCat Identities
Fri Mar 21 17:12:20 2014 UTClccn-n810050640.23The queen of the sciences a history of mathematics /0.500.93Schwere, Elecktricität und Magnetismus nach den Vorlesungen von Bernard Riemann5111664Bernhard_Riemannn 81005064551146RiemannRiemann, B.Riemann, B. 1826-1866Riemann, B. (Bernhard), 1826-1866Riemann, BernhardRiemann, Bernhard, 1826-1866Riemann, Georg Friedrich 1826-1866Riemann, Georg Friedrich Bernhard, 1826-1866Rīman, ... 1826-1866Riman, Berngard.Riman, Bernkhard, 1826-1866Riman, Georg Fridrikh Bernkhard, 1826-1866רימאן, ברנרד, 1826-1866リーマンlccn-n95092777Derbyshire, Johnlccn-n99001092Du Sautoy, Marcuslccn-n84804288Weber, Heinrich1842-1913arredtlccn-no2003047722Rockmore, Daniel N.(Daniel Nahum)lccn-n81000799Monastyrskiĭ, Mikhail Ilʹichlccn-n82056090Dedekind, Richard1831-1916ctbedtcwtlccn-n85161438Borwein, Peter B.lccn-n85049336Hattendorff, Karl1834-1882arradpedtlccn-n86060662Wells, R. O.(Ronny O.)lccn-n84200394Sabbagh, KarlRiemann, Bernhard1826-1866HistoryBiographyNumbers, PrimeRiemann, Bernhard,SeriesNumber theoryRiemann hypothesisMathematicsMathematical physicsMathematiciansGermanyFunctionsDifferential equationsTopologyIntegral equationsGeometry, RiemannianElectricityFunctions, AbelianRiemann surfacesGeneralized spacesSet theoryHydrodynamicsHeat--ConductionElasticityGeometry--FoundationsDifferential equations, PartialGravitationSurfacesMagnetismElliptic functionsGeometryRelativity (Physics)Mathematical analysisAlgebraGauss, Carl Friedrich,EuclidRamanujan Aiyangar, Srinivasa,Mathematics, AncientMathematics--PhilosophyGeometry, Non-EuclideanMathematics, MedievalTrigonometryEuler, Leonhard,Fermat, Pierre de,Geometry, AnalyticLeibniz, Gottfried Wilhelm,--Freiherr von,ArchimedesFermat's last theoremGeometry, DifferentialDescartes, René,Hypatia,Fourier, Charles,18261866185118541857185918601861186218651866186718681869187218731875187618781879188018811882188418921893189418951896189818991900190119021903190419101911191219171919192019211922192319241925192719301933193519361938194019411943194419481952195319571958195919601961196319641968196919701971197219731974197519761977197819791980198119821984198519871990199119921993199419961997199819992000200120022003200420052006200720082009201020112012201311667251771510.92QA3ocn721033748ocn720365004ocn720364997ocn714764609ocn073812180ocn841582556ocn073066439ocn719278294ocn246259685ocn311628126ocn247531071ocn256187186ocn832280608ocn830915827ocn830915822ocn552418109ocn43982501766165ocn000849555book18760.79Riemann, BernhardGesammelte mathematische Werke und wissenschaftlicher NachlassWith a new english introduction by Hans Levy37214ocn001345886book19030.79Frank, PhilippDie Differential- und Integralgleichungen der Mechanik und Physik32458ocn022659871book18760.81Riemann, BernhardGesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge : collected papers27032ocn003938674book18080.86Riemann, BernhardŒuvres mathématiques de Riemann24334ocn001367505book18690.86Riemann, BernhardPartielle Differentialgleichungen und deren Anwendung auf physikalische Fragen21941ocn001497351book19190.81Riemann, BernhardÜber die Hypothesen, welche der Geometrie zu Grunde liegen1338ocn008426827book18760.93Riemann, BernhardSchwere, Elecktricität und Magnetismus nach den Vorlesungen von Bernard Riemann12411ocn013472786book19000.79Weyl, HermannDas Kontinuum, und andere Monographien11617ocn011622282book18990.90Riemann, BernhardElliptische functionen10022ocn003475944book19000.86Weber, HeinrichDie partiellen Differential-gleichungen der mathematischen Physik nach Riemanns̓ Vorlesungen in 5. Aufl. bearb789ocn018170822book19840.63Gauss, Carl FriedrichGausssche Flächentheorie, Riemannsche Räume und Minkowski-Welt7715ocn013464641book18760.81Riemann, BernhardSchwere, elektricität und magnetismus683ocn009540289book19010.81Weber, HeinrichDie partiellen Differential-Gleichungen der mathematischen Physid nach Riemanns Vorlesungen644ocn060463231book20040.81Riemann, BernhardCollected papers535ocn846968508file20130.47Riemann, BernhardBernhard Riemann "Über die Hypothesen, welche der Geometrie zu Grunde liegen"In diesem Werk wird einer der klassischen Texte der Mathematik umfassend historisch, mathematisch, physikalisch und philosophisch kommentiert und die gesamte Entwicklung dieser Disziplinen eingeordnet. Neben dem Urtext wird auch der historisch wichtige Kommentarteil von Hermann Weyl wiedergegeben4711ocn174375449book19010.37Riemann, BernhardDie partiellen Differential-Gleichungen der mathematischen Physik416ocn020465241book18690.73Riemann, BernhardPartielle Differentialgleichungen und ihre Anwendungen auf physikalische Fragen3911ocn069046033book19000.81Weber, HeinrichDie partiellen differential-gleichungen der mathematischen physik nach Riemann's Vorlesungen379ocn174375436book19000.37Riemann, BernhardDie partiellen Differential-Gleichungen der mathematischen Physik356ocn489866235book18980.53Riemann, BernhardOeuvres mathématiques289512ocn051478406book20030.28Derbyshire, JohnPrime obsession : Bernhard Riemann and the greatest unsolved problem in mathematicsAnnotation+-+249035458512548ocn052170315book20030.24Du Sautoy, MarcusThe music of the primes : searching to solve the greatest mystery in mathematicsHistoryExplains how the prime numbers have fascinated mathematicians, and recounts efforts to prove the Riemann Hypothesis, first suggested by Bernard Riemann in 1859, that would finally bring order and harmony to these numbers+-+9525671155110310ocn056194944book20050.29Rockmore, Daniel NStalking the Riemann hypothesis : the quest to find the hidden law of prime numbersHistory"Stalking the Riemann Hyothesis" takes you on a guided tour of the deepest mystery in mathematics+-+K1867902856725ocn014719117book19870.73Monastyrskiĭ, Mikhail IlʹichRiemann, topology, and physicsBiographyThis significantly expanded second edition of Riemann, Topology, and Physics combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann-Hilbert problem and, in part two, to discoveries in field theory and condensed matter such as the quantum Hall effect, quasicrystals, membranes with nontrivial topology, "fake" differential structures on 4-dimensional Euclidean space, new invariants of knots and more. In his relatively short lifetime, this great mathematician made outstanding contributions to nearly all branches of mathematics; today Riemann's name appears prominently throughout the literature+-+84328126354975ocn191465544com20080.70Borwein, Peter BThe Riemann hypothesis a resource for the afficionado and virtuoso alikeHistory"This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture."--Jacket+-+30767223853893ocn038992931book19960.70Laugwitz, DetlefBernhard Riemann, 1826-1866 : turning points in the conception of mathematicsHistoryBiographyThis book, originally written in German and presented here in an English-language translation, is the first attempt to examine Riemann's scientific work from a single unifying perspective. Laugwitz describes Riemann's development of a conceptual approach to mathematics at a time when conventional algorithmic thinking dictated that formulas and figures, rigid constructs, and transformations of terms were the only legitimate means of studying mathematical objects. David Hilbert gave prominence to the Riemannian principle of utilizing thought, not calculation, to achieve proofs. Hermann Weyl interpreted the Riemann principle - for mathematics and physics alike - to be a matter of "understanding the world through its behavior in the infinitely small." This remarkable work, rich in insight and scholarship, is addressed to mathematicians, physicists, and philosophers interested in mathematics. It seeks to draw those readers closer to the underlying ideas of Riemann's work and to the development of them in their historical context. This illuminating English-language version of the original German edition will be an important contribution to the literature of the history of mathematics+-+65959126352473ocn053026983book20020.29Sabbagh, KarlThe Riemann hypothesis : the greatest unsolved problem in mathematics"In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world-class mathematicians who spend their lives working on the hypothesis - many paying particular attention to "Riemann's zeros," a series of points that are believed to lie in a straight line, though no one can prove it - and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities."--BOOK JACKET+-+82550792851744ocn037024791book19970.73Maurin, KrzysztofThe Riemann legacy : Riemannian ideas in mathematics and physics"The study of the rise and fall of great mathematical ideas is undoubtedly one of the most fascinating branches of the history of science. It enables one to come into contact with and to participate in the world of ideas. Nowhere can we see more concretely the enormous spiritual energy which, initially still lacking clear contours, begs to be moulded and developed by mathematicians, than in Riemann (1826-1866). He perceived mathematics and physics as one discipline and thought of himself as both mathematician and physicist. His ideas as well as their contemporary descendants are the theme of this book." "This volume will be useful to those interested in such diverse fields as the mathematics of physics, algebra and number theory, topology and geometry, analysis, and the history of science."--Jacket+-+K1819874251676ocn051963513book20020.29Sabbagh, KarlDr. Riemann's zeros+-+95569089363241246ocn071275660book20070.81Beyond geometry : classic papers from Riemann to Einstein+-+75080913951081ocn053467231book20030.25Du Sautoy, MarcusThe music of the primes : why an unsolved problem in mathematics matters+-+4420066936571ocn320475909visu20080.23Bressoud, David MThe queen of the sciences a history of mathematicsHistoryIn the 17th century, scientist and mathematician Galileo Galilei noted that the book of nature "cannot be understood unless one first learns to comprehend the language and read the characters in which it is written. It is written in the language of mathematics . . . without which it is not humanly possible to understand a single word of it." The same feeling prompted German mathematician Carl Friedrich Gauss to call mathematics the "queen of the sciences" because of this success in uncovering the nature of physical reality. For at least 4,000 years of recorded history, humans have engaged in the study of mathematics, and this examination begins in ancient Mesopotamia and leads directly to the Human Genome Project, which uses sophisticated mathematical techniques to decipher the 3 billion letters of the human genetic code. Today quantum physics, string theory, chaos theory, information technology, and other mathematics-intensive disciplines that have transformed the way we understand and deal with the world491ocn035764299book19960.70Neuenschwander, ErwinRiemanns Einführung in die Funktionentheorie : eine quellenkritische Edition seiner Vorlesungen mit einer Bibliographie zur Wirkungsgeschichte der Riemannschen FunktionentheorieHistory462ocn012735877book19570.86Naas, JosefDer Begriff des Raumes in der Geometrie; Bericht von der Riemann-Tagung des Forschungsinstituts für Mathematik452ocn001991656book19750.76Maier, WilhelmVom Erbe Bernhard Riemanns352ocn148402709book20050.39Derbyshire, JohnZhi shu mo li112ocn052510565book18650.84Neumann, CarlVorlesungen über Riemann's theorie der Abel'schen integrale83ocn013480899book18920.59Burkhardt, HeinrichBernhardt Riemann. Vortrag, bei der am 20. juli 1891 vom Mathematischen verein zu Göttingen veranstalteten feier der 25. wiederkehr seines todestag gehalten71ocn123345975visu20070.47Music of the primesWith the advent of Bernhard Riemann's zeta-hypothesis, the study of prime numbers took on astonishing new dimensions--including a way to predict the appearance of primes. This program focuses on the numerical landscape which Riemann's calculations opened up and examines the work of subsequent mathematicians who challenged the notion of a finite set of prime numbers. Using state-of-the-art 3-D animation, the film guides viewers through the zero-punctuated pattern that Riemann unveiled. It also describes the friendship between G.H. Hardy and Srinivasa Ramanujan and the difficulties both men experienced as they confronted problems in number theory71ocn226267500visu20070.47Music of the primesThe special characteristics of prime numbers have intrigued and confounded mathematicians since ancient times. Outlining the basics of primes--including their unique multiplicative properties and their supposedly random appearance in the number line--this program details the early history of prime number theory, beginning with discoveries that took place in the Hellenistic world. The film illustrates how the torch of Euclid's work passed to 18th- and 19th-century Europeans, exploring Carl Friedrich Gauss' groundbreaking work in the prediction of prime numbers and introducing Bernhard Riemann's revolutionary zeta function+-+6595912635+-+6595912635Fri Mar 21 15:57:14 EDT 2014batch36860