Theodorsen, Theodore
Overview
Works:  6 works in 17 publications in 1 language and 176 library holdings 

Roles:  Author 
Publication Timeline
.
Most widely held works about
Theodore Theodorsen
 A modern view and appreciation of the works of Theodore Theodorsen, physicist and engineer : critical essays by Theodore Theodorsen( Book )
Most widely held works by
Theodore Theodorsen
Effect of the lift coefficient on propeller flutter by
Theodore Theodorsen(
Book
)
5 editions published in 1945 in English and held by 5 WorldCat member libraries worldwide
Flutter of propellers at high angles of attack is discussed, and flutter data obtained in connection with tests of models of large windtunnel propellers are analyzed and results presented. It is shown that in the high angleofattack range flutter of a propeller invariably occurs at a speed substantially below the classical flutter speed. The angle of attack at which flutter occurs appears to be nearly constant and independent of the initial blade setting. Thus, the blade simply twists to the critical position and flutter starts. Formulas have been developed which give an operating angle in terms of the design angle and other associated parameters, and these relations are presented in the form of graphs. It is seen that the flutter speed is lowered as the initial design lift coefficient is increased. It is further shown that by use of a proper camber of the propeller section the flutter speed may approach the classical value. A camber for which the blade will not twist is found to exist, and the corresponding lift coefficient is shown to be of special significance
5 editions published in 1945 in English and held by 5 WorldCat member libraries worldwide
Flutter of propellers at high angles of attack is discussed, and flutter data obtained in connection with tests of models of large windtunnel propellers are analyzed and results presented. It is shown that in the high angleofattack range flutter of a propeller invariably occurs at a speed substantially below the classical flutter speed. The angle of attack at which flutter occurs appears to be nearly constant and independent of the initial blade setting. Thus, the blade simply twists to the critical position and flutter starts. Formulas have been developed which give an operating angle in terms of the design angle and other associated parameters, and these relations are presented in the form of graphs. It is seen that the flutter speed is lowered as the initial design lift coefficient is increased. It is further shown that by use of a proper camber of the propeller section the flutter speed may approach the classical value. A camber for which the blade will not twist is found to exist, and the corresponding lift coefficient is shown to be of special significance
The theory of propellers. 3  The slipstream contraction with numerical values for twoblade and fourblade propellers by
Theodore Theodorsen(
Book
)
4 editions published between 1944 and 1947 in English and held by 4 WorldCat member libraries worldwide
As the conditions of the ultimate wake are of concern both theoretically and practically, the magnitude of the slipstream contraction has been calculated. It will be noted that the contraction in a representative case is of the order of only 1 percent of the propeller diameter. In consequence, all calculations need involve only firstorder effects. Curves and tables are given for the contraction coefficient of twoblade and fourblade propellers for various values of the advance ratio; the contraction coefficient is defined as the contraction in the diameter of the wake helix in terms of the wake diameter at infinity. The contour lines of the wake helix are also shown at four values of the advance ratio in comparison with the contour lines for an infinite number of blades
4 editions published between 1944 and 1947 in English and held by 4 WorldCat member libraries worldwide
As the conditions of the ultimate wake are of concern both theoretically and practically, the magnitude of the slipstream contraction has been calculated. It will be noted that the contraction in a representative case is of the order of only 1 percent of the propeller diameter. In consequence, all calculations need involve only firstorder effects. Curves and tables are given for the contraction coefficient of twoblade and fourblade propellers for various values of the advance ratio; the contraction coefficient is defined as the contraction in the diameter of the wake helix in terms of the wake diameter at infinity. The contour lines of the wake helix are also shown at four values of the advance ratio in comparison with the contour lines for an infinite number of blades
The theory of propellers. 1  Determination of the circulation function and the mass coefficient for dualrotating propellers by
Theodore Theodorsen(
Book
)
3 editions published in 1944 in English and held by 3 WorldCat member libraries worldwide
Values of the circulation function have been obtained for dualrotating propellers. Numerical values are given for four, eight, and twelveblade dualrotating propellers and for advance ratios from 2 to about 6. In addition, the circulation function has been determined for singlerotating propellers for the higher values of the advance ratio. The mass coefficient, another quantity of significance in propeller theory, has been introduced
3 editions published in 1944 in English and held by 3 WorldCat member libraries worldwide
Values of the circulation function have been obtained for dualrotating propellers. Numerical values are given for four, eight, and twelveblade dualrotating propellers and for advance ratios from 2 to about 6. In addition, the circulation function has been determined for singlerotating propellers for the higher values of the advance ratio. The mass coefficient, another quantity of significance in propeller theory, has been introduced
The theory of propellers by
Theodore Theodorsen(
Book
)
2 editions published in 1944 in English and held by 1 WorldCat member library worldwide
A technical method is given for calculating the axial interference velocity of a propeller. The method involves the use of certain weight functions P, Q, and F. Numerical values for the weight functions are given for twoblade, threeblade, and sixblade propellers
2 editions published in 1944 in English and held by 1 WorldCat member library worldwide
A technical method is given for calculating the axial interference velocity of a propeller. The method involves the use of certain weight functions P, Q, and F. Numerical values for the weight functions are given for twoblade, threeblade, and sixblade propellers
Experiments on drag of revolving disks, cylinders and streamline rods at high speeds by
Theodore Theodorsen(
Book
)
2 editions published in 1944 in English and held by 1 WorldCat member library worldwide
An experimental investigation concerned primarily with the extension of test data on the drag of revolving disks, cylinders, and streamline rods to high Mach numbers and Reynolds numbers is presented. A Mach number of 2.7 was reached for revolving rods with Freon 113 as the medium. The tests on disks extended to a Reynolds number of 7,000,000. Parts of the study are devoted to a reexamination of the von KármánPrandtl logarithmic resistance law and the AckeretTaylor supersonic drag formula and conditions for their validity. The tests confirm, in general, earlier theories and add certain new results. A finding of first importance is that the skin friction does not depend on the Mach number. Of interest, also, are experimental results on revolving rods at very high Mach numbers, which show drag curves of the type familiar from ballistics. A new result which may have general applicability is that the effect of surface roughness involves two distinct parameters, particle size and particle unit density. The particle size uniquely determines the Reynolds number at which the effect of the roughness first appears, whereas the particle unit density determines the behavior of the drag coefficient at higher Reynolds numbers. Beyond the critical Reynolds number at which the roughness effect appears, the drag coefficient is found to be a function of unit density. In the limiting case of particle "saturation," or a maximum density of particles, the drag coefficient remains constant as the Reynolds number is increased
2 editions published in 1944 in English and held by 1 WorldCat member library worldwide
An experimental investigation concerned primarily with the extension of test data on the drag of revolving disks, cylinders, and streamline rods to high Mach numbers and Reynolds numbers is presented. A Mach number of 2.7 was reached for revolving rods with Freon 113 as the medium. The tests on disks extended to a Reynolds number of 7,000,000. Parts of the study are devoted to a reexamination of the von KármánPrandtl logarithmic resistance law and the AckeretTaylor supersonic drag formula and conditions for their validity. The tests confirm, in general, earlier theories and add certain new results. A finding of first importance is that the skin friction does not depend on the Mach number. Of interest, also, are experimental results on revolving rods at very high Mach numbers, which show drag curves of the type familiar from ballistics. A new result which may have general applicability is that the effect of surface roughness involves two distinct parameters, particle size and particle unit density. The particle size uniquely determines the Reynolds number at which the effect of the roughness first appears, whereas the particle unit density determines the behavior of the drag coefficient at higher Reynolds numbers. Beyond the critical Reynolds number at which the roughness effect appears, the drag coefficient is found to be a function of unit density. In the limiting case of particle "saturation," or a maximum density of particles, the drag coefficient remains constant as the Reynolds number is increased
Audience Level
0 

1  
Kids  General  Special 
Related Identities
Associated Subjects
AerodynamicsResearch Aeronautics AeronauticsResearch Air flow Angle of attack (Aerodynamics) Bars (Engineering) Charts, diagrams, etc Cylinders Disks, Rotating Drag (Aerodynamics) Flutter (Aerodynamics) Lift (Aerodynamics) Mathematics Oscillating wings (Aerodynamics) Propellers, Aerial Wind tunnels
Languages