WorldCat Identities

Ginoux, Jean-Marc

Overview
Works: 17 works in 72 publications in 3 languages and 3,172 library holdings
Genres: Biography  History 
Roles: Author, Editor, Thesis advisor
Classifications: Q143.P7, 510.92
Publication Timeline
.
Most widely held works by Jean-Marc Ginoux
Differential geometry applied to dynamical systems by Jean-Marc Ginoux( )

20 editions published between 2008 and 2009 in English and held by 1,484 WorldCat member libraries worldwide

1. Differential equations. 1.1. Galileo's pendulum. 1.2. D'Alembert transformation. 1.3. From differential equations to dynamical systems -- 2. Dynamical systems. 2.1. State space - phase space. 2.2. Definition. 2.3. Existence and uniqueness. 2.4. Flow, fixed points and null-clines. 2.5. Stability theorems. 2.6. Phase portraits of dynamical systems. 2.7. Various types of dynamical systems. 2.8. Two-dimensional dynamical systems. 2.9. High-dimensional dynamical systems. 2.10. Hamiltonian and integrable systems -- 3. Invariant sets. 3.1. Manifold. 3.2. Invariant sets -- 4. Local bifurcations. 4.1. Center manifold theorem. 4.3. Local bifurcations of codimension 1 -- 5. Slow-fast dynamical systems. 5.1. Introduction. 5.2. Geometric singular perturbation theory. 5.3. Slow-fast dynamical systems - singularly perturbed systems -- 6. Integrability. 6.1. Integrability conditions, integrating factor, multiplier. 6.2. First integrals - Jacobi's last multiplier theorem. 6.3. Darboux theory of integrability -- 7. Differential geometry. 7.1. Concept of curves - kinematics vector functions. 7.2. Gram-Schmidt process - generalized Frénet moving frame. 7.3. Curvatures of trajectory curves - osculating planes. 7.4. Curvatures and osculating plane of space curves. 7.5. Flow curvature method -- 8. Dynamical systems. 8.1. Phase portraits of dynamical systems -- 9. Invariant sets. 9.1. Invariant manifolds. 9.2. Linear invariant manifolds. 9.3. Nonlinear invariant manifolds -- 10. Local bifurcations. 10.1. Center manifold. 10.2. Normal form theorem. 10.3. Local bifurcations of codimension 1 -- 11. Slow-fast dynamical systems. 11.1. Slow manifold of n-dimensional slow-fast dynamical systems. 11.2. Invariance. 11.3. Flow curvature method - singular perturbation method. 11.4. Non-singularly perturbed systems -- 12. Integrability. 12.1. First integral. 12.2. Linear invariant manifolds as first integral. 12.3. Darboux theory of integrability -- 13. Inverse problem. 13.1. Flow curvature manifold of polynomial dynamical systems. 13.2. Flow curvature manifold symmetry (parity). 13.3. Inverse problem for polynomial dynamical systems -- 14. Dynamical systems. 14.1. FitzHugh-Nagumo model. 14.2. Pikovskii-Rabinovich-Trakhtengerts model -- 15. Invariant sets - integrability. 15.1. Pikovskii-Rabinovich-Trakhtengerts model. 15.2. Rikitake model. 15.3. Chua's model. 15.4. Lorenz model -- 16. Local bifurcations. 16.1. Chua's model. 16.2. Lorenz model -- 17. Slow-fast dynamical systems - singularly perturbed systems. 17.1. Piecewise linear models 2D & 3D. 17.2. Singularly perturbed systems 2D & 3D. 17.3. Slow fast dynamical systems 2D & 3D. 17.4. Piecewise linear models 4D & 5D. 17.5. Singularly perturbed systems 4D & 5D. 17.6. Slow fast dynamical systems 4D & 5D. 17.7. Slow manifold gallery. 17.8. Forced Van der Pol model
Henri Poincaré : a biography through the daily papers by Jean-Marc Ginoux( )

14 editions published between 2013 and 2014 in English and held by 1,218 WorldCat member libraries worldwide

On July 17, 2012, the centenary of Henri Poincaré's death was commemorated; his name being associated with so many fields of knowledge that he was considered as the last universalist. In pure and applied mathematics, physics, astronomy, engineering and philosophy, his works have had a great impact all over the world. Poincaré acquired in his lifetime such a reputation that, both nationally and internationally, his life and career were made the object of various articles in the daily papers not only in France, but also in the USA. Some of his philosophical concepts have even caused sharp controversies in the press (as we will discover in this book). This work presents an original portrait of Henri Poincaré based on various unknown anecdotes of his life (for example, his first name was actually not Henri, but Henry; he obtained his high school diploma in sciences with a zero in mathematics, etc.) and from what was reported by the newspapers of his time
History of nonlinear oscillations theory in France (1880-1940) by Jean-Marc Ginoux( )

8 editions published between 2017 and 2018 in English and German and held by 221 WorldCat member libraries worldwide

This book reveals the French scientific contribution to the mathematical theory of nonlinear oscillations and its development. The work offers a critical examination of sources with a focus on the twentieth century, especially the period between the wars. Readers will see that, contrary to what is often written, France's role has been significant. Important contributions were made through both the work of French scholars from within diverse disciplines (mathematicians, physicists, engineers), and through the geographical crossroads that France provided to scientific communication at the time. This study includes an examination of the period before the First World War which is vital to understanding the work of the later period. By examining literature sources such as periodicals on the topic of electricity from that era, the author has unearthed a very important text by Henri Poincaré, dating from 1908. In this work Poincaré applied the concept of limit cycle (which he had introduced in 1882 through his own works) to study the stability of the oscillations of a device for radio engineering. The "discovery" of this text means that the classical perspective of the historiography of this mathematical theory must be modified. Credit was hitherto attributed to the Russian mathematician Andronov, from correspondence dating to 1929. In the newly discovered Poincaré text there appears to be a strong interaction between science and technology or, more precisely, between mathematical analysis and radio engineering. This feature is one of the main components of the process of developing the theory of nonlinear oscillations. Indeed it is a feature of many of the texts referred to in these chapters, as they trace the significant developments to which France contributed. Scholars in the fields of the history of mathematics and the history of science, and anyone with an interest in the philosophical underpinnings of science will find this a particularly engaging account of scientific discovery and scholarly communication from an era full of exciting developments
Henri Poincaré une biographie au(x) quotidien(s) by Jean-Marc Ginoux( Book )

5 editions published in 2012 in French and held by 66 WorldCat member libraries worldwide

Les grandes découvertes de l'histoire de la physique : et leurs démonstrations en 128 exercices by Jean-Marc Ginoux( Book )

2 editions published in 2018 in French and held by 55 WorldCat member libraries worldwide

"Cet ouvrage a pour but de présenter les Grandes Découvertes de l'Histoire de la Physique depuis Thalès de Milet jusqu'à Albert Einstein en replaçant le lecteur dans les conditions de connaissances dans lesquelles elles ont été réalisées. Ainsi, après avoir rappelé les éléments essentiels de la biographie de chaque physicien, le texte original conduisant à sa découverte sera présenté au lecteur sous la forme d'un problème qu'il devra résoudre en faisant appel, dans la mesure du possible, aux seules connaissances dont ce physicien disposait à son époque. " [Source : 4ème de couverture]
Histoire de la théorie des oscillations non linéaires : de Poincaré à Andronov by Jean-Marc Ginoux( Book )

3 editions published between 2014 and 2015 in French and held by 35 WorldCat member libraries worldwide

Albert Einstein : une biographie à travers le temps by Jean-Marc Ginoux( Book )

3 editions published in 2016 in French and held by 34 WorldCat member libraries worldwide

"Cette biographie présente un portrait inédit du célèbre physicien Albert Einstein entièrement réalisé à partir de coupures de presse d'un grand quotidien new-yorkais, le New York Times. Le nombre impressionnant d'articles rédigés sur sa vie et sur son oeuvre offre une approche originale du personnage. Il permet de reconstituer, presque au jour le jour, les évènements les plus marquants de sa vie et de mettre en lumière certains de ses traits de caractère les plus intimes qui apparaissent dans les interviews qu'il accorda à ce quotidien. Cet ouvrage grand public, dénué de tout développement mathématique, fournit également une présentation de ses théories scientifiques (théorie de la relativité restreinte et générale, théorie du champ unifié) qui deviennent accessibles à tous. Au fil des articles, le lecteur découvre un Einstein inattendu grâce à des anecdotes drôles et insolites." (source : 4ème de couverture)
Henri Poincaré by Paul Appell( Book )

4 editions published in 2013 in French and held by 33 WorldCat member libraries worldwide

History of Nonlinear Oscillations Theory in France (1880-1940) by Jean-Marc Ginoux( )

3 editions published in 2017 in English and held by 23 WorldCat member libraries worldwide

This book reveals the French scientific contribution to the mathematical theory of nonlinear oscillations and its development. The work offers a critical examination of sources with a focus on the twentieth century, especially the period between the wars. Readers will see that, contrary to what is often written, France's role has been significant. Important contributions were made through both the work of French scholars from within diverse disciplines (mathematicians, physicists, engineers), and through the geographical crossroads that France provided to scientific communication at the time. This study includes an examination of the period before the First World War which is vital to understanding the work of the later period. By examining literature sources such as periodicals on the topic of electricity from that era, the author has unearthed a very important text by Henri Poincaré, dating from 1908. In this work Poincaré applied the concept of limit cycle (which he had introduced in 1882 through his own works) to study the stability of the oscillations of a device for radio engineering. The “discovery” of this text means that the classical perspective of the historiography of this mathematical theory must be modified. Credit was hitherto attributed to the Russian mathematician Andronov, from correspondence dating to 1929. In the newly discovered Poincaré text there appears to be a strong interaction between science and technology or, more precisely, between mathematical analysis and radio engineering. This feature is one of the main components of the process of developing the theory of nonlinear oscillations. Indeed it is a feature of many of the texts referred to in these chapters, as they trace the significant developments to which France contributed. Scholars in the fields of the history of mathematics and the history of science, and anyone with an interest in the philosophical underpinnings of science will find this a particularly engaging account of scientific discovery and scholarly communication from an era full of exciting developments
History of nonlinear oscillations theory in France (1880-1940) by Jean-Marc Ginoux( Book )

1 edition published in 2017 in English and held by 4 WorldCat member libraries worldwide

Analyse mathématique des phénomènes oscillatoires non linéaires le carrefour français (1880-1940) by Jean-Marc Ginoux( Book )

1 edition published in 2011 in French and held by 3 WorldCat member libraries worldwide

Stabilité des systèmes dynamiques chaotiques et variétés singulières by Jean-Marc Ginoux( Book )

2 editions published in 2005 in French and held by 2 WorldCat member libraries worldwide

Ce mémoire a pour objectif d'étudier la stabilité de systèmes dynamiques chaotiques à partir de la structure géométrique de leurs attracteurs dont une partie s'appuie sur une variété appelée variété lente. Dans ce but, une nouvelle approche basée sur certains aspects du formalisme de la Mécanique du Point et de la Géométrie Différentielle a été développée et a conduit à une interprétation géométrique et cinématique de l'évolution des courbes trajectoires, intégrales de ces systèmes dynamiques au voisinage de la variété lente. L'utilisation du formalisme de la Mécanique du Point a permis, grâce à l'emploi des vecteurs, vitesse et accélération instantanées attachées à un point courant de la courbe trajectoire, de discriminer le domaine lent du domaine rapide et de situer la position de la variété lente à l'intérieur de l'espace des phases. Certaines notions de Géométrie Différentielle, comme la courbure, la torsion et le plan osculateur, ont fourni une équation analytique de la variété lente indépendante des vecteurs propres lents du système linéaire tangent, donc définie sur un plus grand domaine de l'espace des phases. La variété lente a alors été envisagée comme le lieu des points où la courbure des courbes trajectoires, intégrales de ces systèmes dynamiques, est minimum (en dimension deux ce minimum devient égal à zéro). Le signe de la torsion a permis, de caractériser son attractivité et, de discriminer la partie attractive de la partie répulsive de la variété lente et de statuer sur la stabilité de ces courbes trajectoires. Ainsi, la présence dans l'espace des phases d'une variété lente attractive qui contraint les courbes trajectoires, intégrales du système dynamique à visiter son voisinage permet d'étudier la structure de l'attracteur. Cette approche basée sur certains aspects du formalisme de la Mécanique du Point et de la Géométrie Différentielle et qui s'est accompagnée de l'élaboration de programmes numériques a permis de constituer un nouvel outil d'investigation des systèmes dynamiques chaotiques. Son application à des modèles de référence comme celui de B. Van der Pol, de L.O. Chua ou d'E.N. Lorenz a permis d'obtenir plus directement et avec précision l'équation analytique de leur variété lente. De plus, une étude détaillée des modèles de type prédateur-proie comme celui de Rosenzweig-MacArthur ou d'Hastings-Powell, a conduit d'une part à la détermination de leur variété lente et d'autre part à la conception d'un nouveau modèle de type prédateur-proie à trois espèces appelé Volterra-Gause dont l'attracteur chaotique a la forme d'un escargot (chaotic snail shell)
Blondel et les oscillations auto-entretenues by Jean-Marc Ginoux( )

2 editions published in 2012 in French and held by 2 WorldCat member libraries worldwide

Ecologie des communautés zooplanctoniques au sein de deux écosystèmes littoraux méditerranéens : traitement des séries temporelles by Benjamim Bandeira( )

1 edition published in 2013 in French and held by 1 WorldCat member library worldwide

This work focused the study of the evolution of zooplankton communities from time series of surveys conducted from 1995 to 2010 in two coastal coupled ecosystems, Little Bay (PR) and Large Bay (GR) of Toulon (North Western Mediterranean Sea, France) in relation to climatic factors, physical and chemical water parameters and phytoplankton. The samplings surveys of zooplankton, and indeed also of phytoplankton, were a month, on average. The net mesh size used was 90 µm to target Mesozooplankton. The PR differed from the GR in its ecological functioning, because it is semi-closed, but also because human activity is much more important. Our results showed that, from 1995 to 2010 in both bays, zooplankton abundance increased substantially, especially in the PR. It was also established, using statistical tools, that most zooplankton species evolved coordinated each year, but in a different way from one year to another. This is what we call the annual signature, which was more pronounced in the PR. Several environmental parameters such as temperature, oxygen, salinity and sunlight, which were simultaneously recorded, explained this annual signature. It was shown that they significantly influenced the population of zooplankton, instantly or with a delayed effect. Interactions responsible for this development are complex, but it was also established that these factors were stronger when they acted in a coordinated manner. Distribution of zooplankton taxonomic groups showed diversity increases until 2005 and then decreased slightly, while remaining at levels higher than in 1995. The detailed study of diversity, with a classification of the clues themselves was the subject of the last chapter. Finally, we hypothesize that the decline of fish stocks in recent decades throughout the region, resulting in lower rate of predation on zooplankton communities, may explain the increase of zooplankton communities in recent years. This increase in zooplankton abundance could in turn lead to a decrease in phytoplankton biomass. The decrease of phytoplankton was at the same time observed by our team. The latter hypothesis suggests a top-down control of the the food web
Is type 1 diabetes a chaotic phenomenon?( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Combination of Wireless sensor network and artifical neuronal network : a new approach of modeling by Yi Zhao( )

1 edition published in 2013 in English and held by 1 WorldCat member library worldwide

Face à la limitation de la modélisation paramétrique, nous avons proposé dans cette thèse une procédure standard pour combiner les données reçues a partir de Réseaux de capteurs sans fils (WSN) pour modéliser a l'aide de Réseaux de Neurones Artificiels (ANN). Des expériences sur la modélisation thermique ont permis de démontrer que la combinaison de WSN et d'ANN est capable de produire des modèles thermiques précis. Une nouvelle méthode de formation "Multi-Pattern Cross Training" (MPCT) a également été introduite dans ce travail. Cette méthode permet de fusionner les informations provenant de différentes sources de données d'entraînements indépendants (patterns) en un seul modèle ANN. D'autres expériences ont montré que les modèles formés par la méthode MPCT fournissent une meilleure performance de généralisation et que les erreurs de prévision sont réduites. De plus, le modèle de réseau neuronal basé sur la méthode MPCT a montré des avantages importants dans le multi-variable Model Prédictive Control (MPC). Les simulations numériques indiquent que le MPC basé sur le MPCT a surpassé le MPC multi-modèles au niveau de l'efficacité du contrôle
Albert Einstein : a biography through the times by Jean-Marc Ginoux( Book )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.16 (from 0.02 for Differenti ... to 0.99 for Ecologie d ...)

Differential geometry applied to dynamical systems
Covers
Languages
English (48)

French (23)

German (1)