WorldCat Identities

United States Department of Energy Office of Building Technologies

Overview
Works: 365 works in 386 publications in 1 language and 17,065 library holdings
Roles: Sponsor, Researcher
Publication Timeline
.
Most widely held works by United States
Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications( )

1 edition published in 2008 in English and held by 257 WorldCat member libraries worldwide

This report is an analysis of niche markets and applications for light-emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy
Performance of a hot-dry climate whole-house retrofit by Elizabeth Weitzel( )

1 edition published in 2014 in English and held by 255 WorldCat member libraries worldwide

The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings
Simplified space conditioning in low-load homes, results from the Fresno, California retrofit unoccupied test house by Dave Stecher( )

1 edition published in 2014 in English and held by 255 WorldCat member libraries worldwide

In this study, the Building America team, IBACOS, sought to determine cost-effective, energy-efficient solutions for heating and cooling houses. To this end, the team performed field testing in a retrofit unoccupied test house in Fresno, California, to evaluate three air-based heating, ventilation, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. These included a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles
Performance results for Massachusetts and Rhode Island deep energy retrofit pilot community by C Gates( )

1 edition published in 2014 in English and held by 254 WorldCat member libraries worldwide

Between December, 2009 and December, 2012, 42 deep energy retrofit (DER) projects were completed through a pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. Thirty-seven of these projects were comprehensive retrofits while five were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. Building Science Corporation developed a consistent "package" of measures in terms of the performance targeted for major building components. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average
Flexible residential test facility : impact of infiltration and ventilation on measured cooling season energy and moisture levels by Danny S Parker( )

1 edition published in 2014 in English and held by 254 WorldCat member libraries worldwide

Heating, ventilation, and air conditioning design strategy for a hot-humid production builder by Philip Kerrigan( )

1 edition published in 2014 in English and held by 253 WorldCat member libraries worldwide

BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic
Achieving Challenge Home in affordable housing in hot-humid climate by David Beal( )

1 edition published in 2014 in English and held by 253 WorldCat member libraries worldwide

The Building America Partnership for Improved Residential Construction (BA-PIRC), one of the Building America research team leads, has partnered with two builders as they work through the Challenge Home certification process (now Zero Energy Ready Home) in one test home each. The builder partners participating in this cost-shared research are Southeast Volusia County Habitat for Humanity near Daytona, Florida and Manatee County Habitat for Humanity near Tampa, Florida. Both are affiliates of Habitat for Humanity International, a non-profit affordable housing organization. This research serves to identify viable technical pathways to meeting the CH criteria for other builders in the region. A further objective of this research is to identify gaps and barriers in the marketplace related to product availability, labor force capability, code issues, cost effectiveness, and business case issues that hinder or prevent broader adoption on a production scale
Insulated concrete form walls integrated with mechanical systems in a cold climate test house by D Mallay( )

2 editions published in 2014 in English and held by 253 WorldCat member libraries worldwide

Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate
Energy evaluation of a new construction pilot community, Fresno California by Arlan Burdick( )

1 edition published in 2014 in English and held by 253 WorldCat member libraries worldwide

A new construction pilot community was constructed by builder-partner Wathen-Castanos Hybrid Homes (WCHH) based on a single occupied test house that was designed to achieve greater than 30% energy savings with respect to the House Simulation Protocols (Hendron, Robert; Engebrecht, Cheryn (2010). Building America House Simulation Protocols. Golden, CO: National Renewable Energy Laboratory). Builders face several key problems when implementing a whole-house systems integrated measures package (SIMP) from a single test house into multiple houses. Although a technical solution already may have been evaluated and validated in an individual test house, the potential exists for constructability failures at the community scale. This report addresses factors of implementation and scalability at the community scale and proposes methodologies by which community-scale energy evaluations can be performed based on results at the occupied test house level. Research focused on the builder and trade implementation of a SIMP and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization
Performance verification of production-scalable energy-efficient solutions : Winchester/Camberly Homes mixed-humid climate by D Mallay( )

1 edition published in 2014 in English and held by 253 WorldCat member libraries worldwide

Winchester/Camberley Homes with the Building America program and its NAHB Research Center Industry Partnership collaborated to develop a new set of high performance home designs that could be applicable on a production scale. The new home designs are to be constructed in the mixed humid climate zone four and could eventually apply to all of the builder's home designs to meet or exceed future energy codes or performance-based programs. However, the builder recognized that the combination of new wall framing designs and materials, higher levels of insulation in the wall cavity, and more detailed air sealing to achieve lower infiltration rates changes the moisture characteristics of the wall system. In order to ensure long term durability and repeatable successful implementation with few call-backs, this report demonstrates through measured data that the wall system functions as a dynamic system, responding to changing interior and outdoor environmental conditions within recognized limits of the materials that make up the wall system. A similar investigation was made with respect to the complete redesign of the heating, cooling, air distribution, and ventilation systems intended to optimize the equipment size and configuration to significantly improve efficiency while maintaining indoor comfort. Recognizing the need to demonstrate the benefits of these efficiency features, the builder offered a new house model to serve as a test case to develop framing designs, evaluate material selections and installation requirements, changes to work scopes and contractor learning curves, as well as to compare theoretical performance characteristics with measured results
Internal roof and attic thermal radiation control retrofit strategies for cooling-dominated climates by ʻAlī Fallāḥī( )

1 edition published in 2013 in English and held by 253 WorldCat member libraries worldwide

This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC)
Predicting envelope leakage in attached dwellings by O Faakye( )

1 edition published in 2013 in English and held by 252 WorldCat member libraries worldwide

Better duct systems for home heating and cooling( )

1 edition published in 2004 in English and held by 252 WorldCat member libraries worldwide

Duct systems used in forced-air space-conditioning systems are a vital element in home energy efficiency. How well a system works makes a big difference in the cost and the effectiveness of heating and cooling a home. At the same time, a duct system that is poorly designed or maintained can have a detrimental effect on the health of the people who live in the house, through the unintended distribution of indoor air pollution
Occupant-in-place energy efficiency retrofit in a group home for 30% energy savings in climate zone 4 by Mike Moore( )

1 edition published in 2013 in English and held by 252 WorldCat member libraries worldwide

Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes - such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study's results will be used to identify cost-effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings
Air leakage and air transfer between garage and living space by Armin Rudd( )

1 edition published in 2014 in English and held by 252 WorldCat member libraries worldwide

This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques
Cladding attachment over thick exterior insulating sheathing by Peter Baker( )

1 edition published in 2014 in English and held by 252 WorldCat member libraries worldwide

The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?
Measured whole-house performance of TaC Studios test home by T Butler( )

1 edition published in 2013 in English and held by 252 WorldCat member libraries worldwide

As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems
Evaluation of CNT Energy savers retrofit packages implemented in multifamily buildings by Jenne Farley( )

1 edition published in 2013 in English and held by 252 WorldCat member libraries worldwide

This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depleting rental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings
Validation of a hot water distribution model using laboratory and field data by C Backman( )

1 edition published in 2013 in English and held by 252 WorldCat member libraries worldwide

Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages
Northwest Energy Efficient Manufactured Housing Program : high performance manufactured home prototyping and construction development by Tom Hewes( )

1 edition published in 2013 in English and held by 252 WorldCat member libraries worldwide

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.44 (from 0.42 for Flexible r ... to 0.68 for U.S. Depar ...)

Alternative Names

controlled identityUnited States. Department of Energy. Building Technology, State and Community Programs

controlled identityUnited States. Department of Energy. Office of Conservation and Renewable Energy

controlled identityUnited States. Department of Energy. Office of Energy Efficiency and Renewable Energy

Office of Building Technologies

United States. Department of Energy. Deputy Assistant Secretary for Building Technologies

United States. Department of Energy. Office of Conservation and Renewable Energy. Office of Building Technologies

United States. Department of Energy. Office of Energy Efficiency and Renewable Energy. Office of Building Technologies

United States. Dept. of Energy. Office of Building Technologies

Languages
English (23)