WorldCat Identities

Yakimova, Rositsa

Works: 114 works in 119 publications in 1 language and 139 library holdings
Roles: Editor, Other, Author
Publication Timeline
Most widely held works by Rositsa Yakimova

2 editions published in 2021 in Undetermined and English and held by 18 WorldCat member libraries worldwide

This book is a compilation of recent studies by recognized experts in the field of epitaxial graphene working towards a deep comprehension of growth mechanisms, property engineering, and device processing. The results of investigations published within this book develop cumulative knowledge on matters related to device-quality epaxial graphene on SiC, bringing this material closer to realistic applications
On the interaction of toxic Heavy Metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene by Ivan Shtepliuk( )

2 editions published in 2017 in English and held by 3 WorldCat member libraries worldwide

The promise of graphene and its derivatives as next generation sensors for real-time detection of toxic heavy metals (HM) requires a clear understanding of behavior of these metals on the graphene surface and response of the graphene to adsorption events. Our calculations herein were focused on the investigation of the interaction between three HMs, namely Cd, Hg and Pb, with graphene quantum dots (GQDs). We determine binding energies and heights of both neutral and charged HM ions on these GQDs. The results show that the adsorption energy of donor-like physisorbed neutral Pb atoms is larger than that of either Cd or Hg. In contrast to the donor-like behavior of elemental HMs, the chemisorbed charged HM species act as typical acceptors. The energy barriers to migration of the neutral adatoms on GQDs are also estimated. In addition, we show how the substitution of a carbon atom by a HM adatom changes the geometric structure of GQDs and hence their electronic and vibrational properties. UV-visible absorption spectra of HM-adsorbed GQDs vary with the size and shape of the GQD. Based on our results, we suggest a route towards the development of a graphene-based sensing platform for the optical detection of toxic HMs
One-dimensional confinement and width-dependent bandgap formation in epitaxial graphene nanoribbons by Hrag Karakachian( )

2 editions published in 2020 in English and held by 3 WorldCat member libraries worldwide

The ability to define an off state in logic electronics is the key ingredient that is impossible to fulfill using a conventional pristine graphene layer, due to the absence of an electronic bandgap. For years, this property has been the missing element for incorporating graphene into next-generation field effect transistors. In this work, we grow high-quality armchair graphene nanoribbons on the sidewalls of 6H-SiC mesa structures. Angle-resolved photoelectron spectroscopy (ARPES) and scanning tunneling spectroscopy measurements reveal the development of a width-dependent semiconducting gap driven by quantum confinement effects. Furthermore, ARPES demonstrates an ideal one-dimensional electronic behavior that is realized in a graphene-based environment, consisting of well-resolved subbands, dispersing and non-dispersing along and across the ribbons respectively. Our experimental findings, coupled with theoretical tight-binding calculations, set the grounds for a deeper exploration of quantum confinement phenomena and may open intriguing avenues for new low-power electronics. Here, the authors investigate armchair graphene nanoribbons by angle-resolved photoelectron spectroscopy, and show the development of a width-dependent semiconducting gap driven by quantum confinement effects, and an ideal one-dimensional electronic behaviour
In-situ terahertz optical Hall effect measurements of ambient effects on free charge carrier properties of epitaxial graphene by Sean Knight( )

2 editions published in 2017 in English and held by 3 WorldCat member libraries worldwide

Unraveling the doping-related charge carrier scattering mechanisms in two-dimensional materials such as graphene is vital for limiting parasitic electrical conductivity losses in future electronic applications. While electric field doping is well understood, assessment of mobility and density as a function of chemical doping remained a challenge thus far. In this work, we investigate the effects of cyclically exposing epitaxial graphene to controlled inert gases and ambient humidity conditions, while measuring the Lorentz force-induced birefringence in graphene at Terahertz frequencies in magnetic fields. This technique, previously identified as the optical analogue of the electrical Hall effect, permits here measurement of charge carrier type, density, and mobility in epitaxial graphene on silicon-face silicon carbide. We observe a distinct, nearly linear relationship between mobility and electron charge density, similar to field-effect induced changes measured in electrical Hall bar devices previously. The observed doping process is completely reversible and independent of the type of inert gas exposure
Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants by Hans He( )

2 editions published in 2018 in English and held by 3 WorldCat member libraries worldwide

Tuning the charge carrier density of two-dimensional (2D) materials by incorporating dopants into the crystal lattice is a challenging task. An attractive alternative is the surface transfer doping by adsorption of molecules on 2D crystals, which can lead to ordered molecular arrays. However, such systems, demonstrated in ultra-high vacuum conditions (UHV), are often unstable in ambient conditions. Here we show that air-stable doping of epitaxial graphene on SiC-achieved by spin-coating deposition of 2,3,5,6-tetrafluoro-tetracyano-quino-dimethane (F4TCNQ) incorporated in poly(methyl-methacrylate)-proceeds via the spontaneous accumulation of dopants at the graphene-polymer interface and by the formation of a charge-transfer complex that yields low-disorder, charge-neutral, large-area graphene with carrier mobilities similar to 70 000 cm(2) V-1 s(-1) at cryogenic temperatures. The assembly of dopants on 2D materials assisted by a polymer matrix, demonstrated by spincoating wafer-scale substrates in ambient conditions, opens up a scalable technological route toward expanding the functionality of 2D materials
Graphene Decorated with Iron Oxide Nanoparticles for Highly Sensitive Interaction with Volatile Organic Compounds by Marius Rodner( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Computational Appraisal of Silver Nanocluster Evolution on Epitaxial Graphene Implications for CO Sensing by Ivan Shtepliuk( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

Early stages of silver nucleation on a two-dimensional (2D) substrate, here, monolayer epitaxial graphene (MEG) on SiC, play a critical role in the formation of application-specific Ag nanostructures. Therefore, it is of both fundamental and practical importance to investigate the growth steps when Ag adatoms start to form a new phase. In this work, we exploit density functional theory to study the kinetics of early-stage nuclei Ag-n (n = 1-9) assembly of Ag nanoparticles on MEG. We find that the Ag-1 monomer tends to occupy hollow site positions of MEG and interacts with the surface mainly through weak dispersion forces. The pseudoepitaxial growth regime is revealed to dominate the formation of the planar silver clusters. The adsorption and nucleation energies of Ag-n clusters exhibit evident odd-even oscillations with cluster size, pointing out the preferable adsorption and nucleation of odd-numbered clusters on MEG. The character of the interaction between a chemisorbed Ag-3 cluster and MEG makes it possible to consider this trimer as the most stable nucleus for the subsequent growth of Ag nanoparticles. We reveal the general correlation between Ag/MEG interaction and Ag-Ag interaction: with increasing cluster size, the interaction between Ag adatoms increases, while the Ag/MEG interaction decreases. The general trend is also supported by the results of charge population analysis, according to which the average charge per Ag adatom in a Ag-n cluster demonstrates a drastic decrement with cluster size increase. 2D-3D structural transition in Ag-n clusters was investigated. We anticipate that the present investigation is beneficial by providing a better understanding of the early-stage nucleation of Ag nanoparticles on MEG at the atomic scale. Specific interaction between odd-numbered Ag clusters preadsorbed onto the MEG surface and carbon monoxide (CO) as well as clusters stability at 300 K is discussed in terms of sensing applications
Large-area microfocal spectroscopic ellipsometry mapping of thickness and electronic properties of epitaxial graphene on Si- and C-face of 3C-SiC(111) by Vanya Darakchieva( )

1 edition published in 2013 in English and held by 1 WorldCat member library worldwide

Microfocal spectroscopic ellipsometry mapping of the electronic properties and thickness of epitaxial graphene grown by high-temperature sublimation on 3C-SiC (111) substrates is reported. Growth of one monolayer graphene is demonstrated on both Si- and C-polarity of the 3C-SiC substrates and it is shown that large area homogeneous single monolayer graphene can be achieved on the Si-face substrates. Correlations between the number of graphene monolayers on one hand and the main transition associated with an exciton enhanced van Hove singularity at ∼4.5 eV and the free-charge carrier scattering time, on the other are established. It is shown that the interface structure on the Si- and C-polarity of the 3C-SiC(111) differs and has a determining role for the thickness and electronic properties homogeneity of the epitaxial graphene
Ambipolar charge transport in quasi-free-standing monolayer graphene on SiC obtained by gold intercalation by Kyŏng-ho Kim( )

1 edition published in 2020 in English and held by 1 WorldCat member library worldwide

We present a study of quasi-free-standing monolayer graphene obtained by intercalation of Au atoms at the interface between the carbon buffer layer (Bu-L) and the silicon-terminated face (0001) of 4H-silicon carbide. Au intercalation is achieved by deposition of an atomically thin Au layer on the Bu-L followed by annealing at 850 degrees C in an argon atmosphere. We explore the intercalation of Au and decoupling of the Bu-L into quasi-free-standing monolayer graphene by surface science characterization and electron transport in top-gated electronic devices. By gate-dependent magnetotransport we find that the Au-intercalated buffer layer displays all properties of monolayer graphene, namely gate-tunable ambipolar transport across the Dirac point, but we find no observable enhancement of spin-orbit effects in the graphene layer, despite its proximity to the intercalated Au layer
Sublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds by Philip Hens( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

<> by Federico Mazzola( )

1 edition published in 2013 in English and held by 1 WorldCat member library worldwide

Interaction of epitaxial graphene with heavy metals: towards novel sensing platform by Ivan Shtepliuk( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Development of next-generation sensors based on graphene materials, especially epitaxial graphene (EG) as the most promising representative, with desirable cross-reactivity to heavy metals (HMs) is of great technological significance in the virtue of enormous impact on environmental sensorics. Nevertheless, the mechanisms by which EG responds to toxic HMs exposure and then produces the output signal are still obscure. In the present study, the nature of interaction of toxic HMs, e.g. Cd, Hg and Pb in neutral charge state and EG on Si-face SiC in the absence and in the presence of pure water solution has been investigated using density functional theory with the inclusion of dispersion correction and cluster model of EG. The gas-phase calculations showed that adsorbed electron-donating Cd and Hg adatoms on EG are most stable when bonded to hollow sites, while Pb species prefer to sit above bridge sites. By using non-covalent interaction analysis, charge decomposition analysis, overlap population density of states analysis and topological analysis, it was found that the interaction between Cd or Hg and EG is non-bonding in nature and is mainly governed by van der Waals forces, while Pb adsorption is followed by the formation of anti-bonding orbitals in vacuum conditions and bonding orbitals in water. The role of solvent in the adsorption behavior of HMs is studied and discussed. The present theoretical analysis is in good agreement with recent experimental results towards discriminative electrochemical analysis of the toxic HMs in aqueous solutions at critically low concentrations
Role of the Potential Barrier in the Electrical Performance of the Graphene/SiC Interface by Ivan Shtepliuk( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

In spite of the great expectations for epitaxial graphene (EG) on silicon carbide (SiC) to be used as a next-generation high-performance component in high-power nano- and micro-electronics, there are still many technological challenges and fundamental problems that hinder the full potential of EG/SiC structures and that must be overcome. Among the existing problems, the quality of the graphene/SiC interface is one of the most critical factors that determines the electroactive behavior of this heterostructure. This paper reviews the relevant studies on the carrier transport through the graphene/SiC, discusses qualitatively the possibility of controllable tuning the potential barrier height at the heterointerface and analyses how the buffer layer formation affects the electronic properties of the combined EG/SiC system. The correlation between the sp(2)/sp(3) hybridization ratio at the interface and the barrier height is discussed. We expect that the barrier height modulation will allow realizing a monolithic electronic platform comprising different graphene interfaces including ohmic contact, Schottky contact, gate dielectric, the electrically-active counterpart in p-n junctions and quantum wells
Periodic Nanoarray of Graphene pn-Junctions on Silicon Carbide Obtained by Hydrogen Intercalation by Hrag Karakachian( )

1 edition published in 2022 in English and held by 1 WorldCat member library worldwide

Graphene pn-junctions offer a rich portfolio of intriguing physical phenomena. They stand as the potential building blocks for a broad spectrum of future technologies, ranging from electronic lenses analogous to metamaterials in optics, to high-performance photodetectors important for a variety of optoelectronic applications. The production of graphene pn-junctions and their precise structuring at the nanoscale remains to be a challenge. In this work, a scalable method for fabricating periodic nanoarrays of graphene pn-junctions on a technologically viable semiconducting SiC substrate is introduced. Via H-intercalation, 1D confined armchair graphene nanoribbons are transformed into a single 2D graphene sheet rolling over 6H-SiC mesa structures. Due to the different surface terminations of the basal and vicinal SiC planes constituting the mesa structures, different types of charge carriers are locally induced into the graphene layer. Using angle-resolved photoelectron spectroscopy, the electronic band structure of the two graphene regions are selectively measured, finding two symmetrically doped phases with p-type being located on the basal planes and n-type on the facets. The results demonstrate that through a careful structuring of the substrate, combined with H-intercalation, integrated networks of graphene pn-junctions could be engineered at the nanoscale, paving the way for the realization of novel optoelectronic device concepts
Broadband Antireflection and Light Extraction Enhancement in Fluorescent SiC with Nanodome Structures by Yiyu Ou( )

1 edition published in 2014 in English and held by 1 WorldCat member library worldwide

We demonstrate a time-efficient and low-cost approach to fabricate Si 3 N 4 coated nanodome structures in fluorescent SiC. Nanosphere lithography is used as the nanopatterning method and SiC nanodome structures with Si 3 N 4 coating are formed via dry etching and thin film deposition process. By using this method, a significant broadband surface antireflection and a considerable omnidirectional luminescence enhancement are obtained. The experimental observations are then supported by numerical simulations. It is believed that our fabrication method will be well suitable for large-scale production in the future
Elimination of step bunching in the growth of large-area monolayer and multilayer graphene on off-axis 3CSiC (111) by Yuchen Shi( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Multilayer graphene has exhibited distinct electronic properties such as the tunable bandgap for optoelectronic applications. Among all graphene growth techniques, thermal decomposition of SiC is regarded as a promising method for production of device-quality graphene. However, it is still very challenging to grow uniform graphene over a large-area, especially multilayer graphene. One of the main obstacles is the occurrence of step bunching on the SiC surface, which significantly influences the formation process and the uniformity of the multilayer graphene. In this work, we have systematically studied the growth of monolayer and multilayer graphene on off-axis 3C SiC(111). Taking advantage of the synergistic effect of periodic SiC step edges as graphene nucleation sites and the unique thermal decomposition energy of 3C SiC steps, we demonstrate that the step bunching can be fully eliminated during graphene growth and large-area monolayer, bilayer, and four-layer graphene can be controllably obtained on high-quality off-axis 3C SiC(111) surface. The low energy electron microscopy results demonstrate that a uniform four-layer graphene has been grown over areas of tens of square micrometers, which opens the possibility to tune the bandgap for optoelectronic devices. Furthermore, a model for graphene growth along with the step bunching elimination is proposed
Non-contact method for measurement of the microwave conductivity of graphene by L Hao( )

1 edition published in 2013 in English and held by 1 WorldCat member library worldwide

We report a non-contact method for conductivity and sheet resistance measurements of monolayer and few layers graphene samples using a high Q microwave dielectric resonator perturbation technique, with the aim of fast and accurate measurement. The dynamic range of the microwave conductivity measurements makes this technique sensitive to a range of imperfections and impurities and can provide rapid non-contacting characterisation. As a demonstration of the power of the technique, we present results for graphene samples grown by three different methods with widely differing sheet resistance values
Resolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effect by Nerijus Armakavicius( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

In this work, we demonstrate the application of terahertz-optical Hall effect (THz-OHE) to determine directionally dependent free charge carrier properties of ambient-doped monolayer and quasi-freestanding-bilayer epitaxial graphene on 4H-SiC(0001). Directionally independent free hole mobility parameters are found for the monolayer graphene. In contrast, anisotropic hole mobility parameters with a lower mobility in direction perpendicular to the SiC surface steps and higher along the steps in quasifree-standing-bilayer graphene are determined for the first time. A combination of THz-OHE, nanoscale microscopy and optical spectroscopy techniques are used to investigate the origin of the anisotropy. Different defect densities and different number of graphene layers on the step edges and terraces are ruled out as possible causes. Scattering mechanisms related to doping variations at the step edges and terraces as a result of different interaction with the substrate and environment are discussed and also excluded. It is suggested that the step edges introduce intrinsic scattering in quasi-free-standing-bilayer graphene, that is manifested as a result of the higher ratio between mean free path and average terrace width parameters. The suggested scenario allows to reconcile existing differences in the literature regarding the anisotropic electrical transport in epitaxial graphene. (C) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
Weak localization scattering lengths in epitaxial, and CVD graphene by A. M. R Baker( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

Weak localization in graphene is studied as a function of carrier density in the range from 1 x 10(11) cm( -2) to 1.43 x 10(13) cm( -2) using devices produced by epitaxial growth onto SiC and CVD growth on thin metal film. The magnetic field dependent weak localization is found to be well fitted by theory, which is then used to analyze the dependence of the scattering lengths L-phi, L-i, and L-* on carrier density. We find no significant carrier dependence for L-phi, a weak decrease for L-i with increasing carrier density just beyond a large standard error, and a n( -1/4) dependence for L-*. We demonstrate that currents as low as 0.01 nA are required in smaller devices to avoid hot-electron artifacts in measurements of the quantum corrections to conductivity. DOI: 10.1103/PhysRevB. 86.235441
Electrochemical Deposition of Copper on Epitaxial Graphene by Ivan Shtepliuk( )

1 edition published in 2020 in English and held by 1 WorldCat member library worldwide

Understanding the mechanism of metal electrodeposition on graphene as the simplest building block of all graphitic materials is important for electrocatalysis and the creation of metal contacts in electronics. The present work investigates copper electrodeposition onto epitaxial graphene on 4H-SiC by experimental and computational techniques. The two subsequent single-electron transfer steps were coherently quantified by electrochemistry and density functional theory (DFT). The kinetic measurements revealed the instantaneous nucleation mechanism of copper (Cu) electrodeposition, controlled by the convergent diffusion of reactant to the limited number of nucleation sites. Cu can freely migrate across the electrode surface. These findings provide fundamental insights into the nature of copper reduction and nucleation mechanisms and can be used as a starting point for performing more sophisticated investigations and developing real applications
moreShow More Titles
fewerShow Fewer Titles
Audience Level
Audience Level
  General Special  
Audience level: 0.93 (from 0.88 for FUNDAMENTA ... to 0.97 for FUNDAMENTA ...)

English (24)