WorldCat Identities

Lizy-Destrez, Stéphanie

Overview
Works: 6 works in 8 publications in 1 language and 23 library holdings
Roles: Author, Opponent, Thesis advisor
Publication Timeline
.
Most widely held works by Stéphanie Lizy-Destrez
Operational scenarios optimization for resupply of crew and cargo of an International gateway Station located near the Earth-Moon-Lagrangian point-2 by Stéphanie Lizy-Destrez( )

3 editions published in 2016 in English and held by 19 WorldCat member libraries worldwide

Étude de la dynamique autour et entre les points de Lagrange de modèles Terre-Lune-Soleil cohérents by Bastien Le Bihan( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

In recent decades, the dynamics about the libration points of the Sun-Earth (SELi) and Earth-Moon (EMLi ) systems have been increasingly studied and used, both in terms of transfer trajectory computation and nominal orbit design. Often seen as two distinct Circular Restricted Three Body Problems (CR3BP), both systems have also been combined to produce efficient transfers in the Sun-Earth-Moon system. This patched CR3BP approximation (PACR3BP) allowed to uncover a low-energy network (LEN) of trajectories that interconnect the Earth, the Moon, EML1,2 and SEL1,2 . However, for every computed trajectory, the PACR3BP requires an arbitrary connection between the CR3BPs, which limits its use in a systematic tool. This thesis introduces a single non-autonomous four-body framework for the study of the LEN based on a coherent periodically-forced Hamiltonian system, the Quasi-Bicircular Problem (QBCP). First, the Parameterization Method is applied in order to obtain high-order, periodic, semi-analytical parameterizations of the invariant manifolds about each libration point. A systematic search for EML1,2 -SEL1,2 connections can then be performed in the parameterization space: initial conditions on the center-unstable manifold at EML1,2 are propagated and projected on the center manifold at SEL1,2. A transfer is found each time that the distance of projection is close to zero. These trajectories are refined as solutions of a Boundary Value Problem, which uncover families of natural transfers, later transitioned into a higher-fidelity model. The global structure of the connecting orbits is largely preserved, which validates the QBCP as a relevant model for the LEN
Guidage et pilotage d'un remorqueur magnétique spatial by Emilien Fabacher( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

Remorquer des satellites peut être utiles pour de nombreuses raisons : les désorbiter ou ré-orbiter, nécessaire dans le cas des satellites en fin de vie, ou pour finaliser les lancements par exemple. Dans ce cas, cette manœuvre augmenterait la capacité des étages supérieurs de lanceurs. Plusieurs moyens peuvent être envisagés pour modifier l'orbite d'un satellite cible grâce à un autre satellite. Parmi eux, les concepts sans contact sont intéressants, car ils fournissent un moyen d'éviter le besoin d'interfaces normalisées. Ils permettent ausside ne pas réaliser d'amarrages non coopératifs, qui représentent une grande difficulté. Enfin, ils contribuent à réduire le risque de créer de nouveaux débris par collision. Dans cette thèse, nous proposons d'utiliser les forces magnétiques pour remorquer le satellite cible. En effet, de nombreux satellites, en particulier en orbite terrestre basse, sont équipés de magnéto-coupleur, utilisés pour le contrôle d'attitude. Un satellite chasseur équipé d'un dipôle magnétique puissant pourrait donc générer des forces sur la cible. Cependant, la création d'une force entre deux dipôles magnétiques génère automatiquement des couples sur les deux dipôles. Par conséquent, la viabilité d'un remorqueur magnétique spatial n'est a priori pas assurée, étant donné qu'appliquer en permanence des couples sur les deux satellites ne serait pas acceptable
Operational scenarios optimization for resupply of crew and cargo of an International gateway Station located near the Earth-Moon-Lagrangian point-2 by Stéphanie Lizy-Destrez( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

In the context of future human space exploration missions in the solar system (with an horizon of 2025) and according to the roadmap proposed by ISECG (International Space Exploration Coordination Group) [1], a new step could be to maintain as an outpost, at one of the libration points of the Earth-Moon system, a space station. This would ease access to far destinations as Moon, Mars and asteroids and would allow to test some innovative technologies, before employing them for far distant human missions. One of the main challenges will be to maintain permanently, and ensure on board crew health thanks to an autonomous space medical center docked to the proposed space station, as a Space haven. Then the main problem to solve is to manage the station servitude, during deployment (modules integration) and operational phase. Challenges lie, on a global point of view, in the design of the operational scenarios and, on a local point of view, in trajectories selection, so as to minimize velocity increments (energy consumption) and transportation duration (crew safety). Which recommendations could be found out as far as trajectories optimization is concerned, that would fulfill energy consumption, transportation duration and safety criterion? What would technological hurdles be to rise for the building of such Space haven? What would be performances to aim at for critical sub-systems? Expected results of this study could point out research and development perspectives for human spaceflight missions and above all, in transportation field for long lasting missions.Thus, the thesis project, presented here, aims at from global system life-cycle decomposition, to identify by phase operational scenario and optimize resupply vehicle mission. The main steps of this project consist in:- Bibliographical survey, that covers all involved disciplines like mission analysis (Astrodynamics, Orbital mechanics, Orthography, N-Body Problem, Rendezvous...), Applied Mathematics, Optimization, Systems Engineering....- Entire system life-cycle analysis, so as to establish the entire set of scenarios for deployment and operations (nominal cases, degraded cases, contingencies...) and for all trajectories legs (Low Earth Orbit, Transfer, Rendezvous, re-entry...)- Trade-off analysis for Space Station architecture- Modeling of the mission legs trajectories- Trajectories optimizationThree main scenarios have been selected from the results of the preliminary design of the Space Station, named THOR: the Space Station deployment, the resupply cargo missions and the crew transportation. The deep analysis of those three main steps sorted out the criticality of the rendezvous strategies in the vicinity of Lagrangian points. A special effort has been set on those approach maneuvers. The optimization of those rendezvous trajectories led to consolidate performances (in term of energy and duration) of the global transfer from the Earth to the Lagrangian point neighborhood and return. Finally, recommendations have been deduced that support the Lagrangian points importance for next steps of Human Spaceflight exploration of the Solar system
Human-robotic performance quantification under time-delay for lunar mission control scenarios by Shahrzad Hosseini( )

1 edition published in 2020 in English and held by 1 WorldCat member library worldwide

La stratégie d'exploration spatiale de l'agence exige une approche efficace et abordable concernant l'opération et le contrôle des systèmes spatiaux. Dans le programme d'exploration une approche optimale, intégrant à la foi acteurs humains en orbite et au sol, doit être trouvée. Dans l'activité proposée nous passons à l'étape suivante: une analyse systématique des données expérimentales existantes et l'exécution de nouvelles expériences pour déterminer l'approche la plus efficace et abordable de technologies et opérations homme-robot intégrés. Dans un premier temps, des données expérimentales existantes de METERON (ESA), mais aussi de grandes bases de données issues d'autres opérations non spatiales, seront analysées et fourniront une métrique claire de la performance des opérations par rapport aux paramètres quantitatifs des propriétés de lien de communication, les capacités des actifs robotiques, le niveau d'automatisation et l'environnement de l'opérateur. La deuxième phase de l'étude définira et mettra en œuvre des expériences basées au sol abordable avec des actifs robotiques déployés dans des environnements analogues et des opérateurs placés dans des environnements de simulation. La troisième et dernière phase de l'activité se terminera par la rédaction de trois documents, en plus de la thèse de doctorat: 1) Manuel de formation d'équipages pour l'opération des technologies homme-robot dans le cadre des missions d'exploration de l'ESA 2) Recommandations pour l'évaluation des performances humaine pour les opérations homme-robots dans le cadre de la sélection des astronautes 3) Un document d'évaluation de la technologie de coopération homme-robot
Development of a system to generate electricity on the Moon's surface during the lunar night by Oscar Torroba Moreno( )

1 edition published in 2010 in English and held by 0 WorldCat member libraries worldwide

One of the biggest challenges of the exploration of the Moon is the survival of the crew and the lunar assets during periods of darkness (known as lunar night). The environmental conditions on the lunar surface and its cycle, with long periods of darkness, make any long mission in need of heat and electricity to be successful. This report presents two different systems to produce heat and electricity on the Moon's surface. The first system is composed by Thermal Wadis, sources of thermal power that can be used to supply heat to protect the exploration systems from the extreme cold during periods of darkness. Results show that Wadis can supply enough heat to keep the lunar electronic devices, such as lunar rovers, above their minimum operating temperature (approximately 243K). The second system developed and presented is the Thermal Energy Storage (TES) system, which is able to run a heat engine during the lunar night to produce electricity. When the sun is shining on the Moon's surface, the system can run the engine directly using the solar power and, at the same time, heat a thermal mass. This thermal mass will be used as a high temperature source to run the heat engine during periods of darkness. In order to choose every component for the TES system, we focused on both the production of the needed amount of energy and the minimization of the weight brought from the Earth to the Moon
 
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.93 (from 0.92 for Operationa ... to 1.00 for Operationa ...)

Alternative Names
Lizy-Destrez, S.

Lizy-Destrez, Stéphanie Isabelle

Languages