WorldCat Identities

Photonique, électronique et ingénierie quantiques (Grenoble)

Overview
Works: 40 works in 41 publications in 2 languages and 67 library holdings
Roles: Other
Publication Timeline
.
Most widely held works by électronique et ingénierie quantiques (Grenoble) Photonique
Interplay between magnetic quantum criticality, Fermi surface and unconventional superconductivity in UCoGe, URhGe and URu2Si2 by Gaël Bastien( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

This thesis is concentrated on the ferromagnetic superconductors UCoGe and URhGe andon the hidden order state in URu2Si2. In the first part the pressure temperature phase diagram of UCoGe was studied up to 10.5 GPa. Ferromagnetism vanishes at the critical pressure pc≈1 GPa. Unconventional superconductivity and non Fermi liquid behavior can be observed in a broad pressure range around pc. The superconducting upper critical field properties were explained by the suppression of the magnetic fluctuations under field. In the second part the Fermi surfaces of UCoGe and URhGe were investigated by quantum oscillations. In UCoGe four Fermi surface pockets were observed. Under magnetic field successive Lifshitz transitions of the Fermi surface have been detected. The observed Fermi surface pockets in UCoGe evolve smoothly with pressure up to 2.5 GPa and do not show any Fermi surface reconstruction at the critical pressure pc. In URhGe, three heavy Fermi surface pockets were detected by quantum oscillations. In the last part the quantum oscillation study in the hidden order state of URu2Si2 shows a strong g factor anisotropy for two Fermi surface pockets, which is compared to the macroscopic g factor anisotropy extractedfrom the upper critical field study
Unconventional superconductivity in the ferromagnetic superconductor UCoGe by Beilun Wu( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

This thesis mainly discuss the upper critical field of the ferromagnetic superconductor UCoGe.Thermal conductivity and other experimental methods have been used to confirm the numerous particularbehaviors of Hc2 in UCoGe, previously observed in resistivity studies. These features, including the stronganisotropy and the anomalous curvatures, cannot be interpreted in terms of classical theories for Hc2.Instead, a phenomenon specific to the ferromagnetic superconductors - the field dependence of the pairinginteraction, needs to be considered. We show that this effect can be consistently analyzed with normalphase properties, and is quantitatively compared with existing theory. This leads to a net clarificationfor the case of H//c in UCoGe, and at the same timeexplains the different behavior of Hc2 in UCoGe and URhGe. These resultsstrongly support the magnetic origin of superconductivity in these systems. For H//b, we showconvergent experimental observations that suggest a possible change of the superconducting state inducedby the transverse magnetic field in UCoGe. Independent from the rest of the study, the last chapter presents someexperimental results on the normal phase of UCoGe and on the other heavy-fermion system UBe13
Hétérostructures de silicium-germanium à dimensionnalité réduite pour la spintronique quantique by Raisei Mizokuchi( )

1 edition published in 2018 in English and held by 2 WorldCat member libraries worldwide

L'intégration à large échelles de bits quantiques (qubits) nécessite le développement de systèmes quantiques à deux niveaux à l'état solide comme par exemple des spins électroniques confinés dans des boîtes quantiques ou des fermions de Majorana dans des nanofils semiconducteurs.Les trous confinés à une ou deux dimensions dans des hétérostructures à base de germanium sont de bons candidats pour de tels qubits parce qu'ils offrent i) une forte interaction spin-orbite (SOI) conduisant à des facteurs de Landé relativement grands, ii) un couplage hyperfin réduit laissant entrevoir un long de temps de cohérence de spin et iii) des masses efficaces relativement faibles favorisant le confinement quantique. Au cours de cette thèse, j'ai étudié le transport de trous dans des systèmes unidimensionnels et bidimensionnels faits à partir d'hétérostructures Ge/Si_0.2Ge_0.8 à contrainte compressive. Une partie importante de mon travail de recherche a été consacrée au développement de techniques de fabrication pour ces dispositifs semi-conducteurs. J'ai débuté par la fabrication de dispositifs de type "barre de Hall" à partir d'hétérostructures Ge/SiGe non dopées.J'ai étudié deux types d' hétérostructures contenants un puits quantique de Ge contraint: l'une où le puits de Ge est à la surface de la structure donc facilement accessible aux contacts métalliques, et l'autre où le puitsest enterré à 70nm sous la surface permettant d'avoir une mobilité élevée.Les propriétés électroniques du gaz de trou bidimensionnel confiné dans lepuits de Ge ont été étudiées à travers des mesures de magnéto-transportjusqu'à 0,3 K. Pour le puits enterré, mes mesures ont révélé un caractère dominant de trou lourd, ce qui est attendu dans le cas d'une contrainte compressive en combinaison avec un confinement bidimensionnel. Les dispositifs avec un puits de Ge superficiel ont montré un transport diffusif et un effet d'anti-localisation faible, ce qui est dû à l'interférence quantique de differents chemins de diffusion en présence du SOI. Le fait que le puits de Ge soit situé à la surface permet des champs électriques perpendiculaires relativement grands et, par conséquent, un plus fort SOI de type Rashba. J'ai été en mesure d'estimer l'énergie caractéristique du SOI en obtenant une valeur d'environ 1 meV. Pour la réalisation de nano-dispositifs quantiques,j'ai utilisé l' hétérostructure avec un puits de Ge enterré où la mobilité des trous se rapproche de 2 × 105 cm2/Vs. En utilisant la lithographie par faisceau d'électrons, des grilles métalliques à l'échelle nanométrique ont été définies sur la surface de l'échantillon afin de créer des constrictions unidimensionnelles dans le gaz de trous bidimensionnel. J'ai ainsi réussi à observer la quantification de la conductance dans des fils quantiques d'une longueur allant jusqu'à ~ 600 nm. Dans ces fils, j'ai étudié l'effet Zeeman sur les sous-bandes unidimensionnelles. J'ai trouvé des grands facteurs g pour le champ magnétique perpendiculaire, et des petits facteurs g dans le plan. Cette forte anisotropie indique un caractère de trou lourd prédominant,ce qui est attendu dans le cas d'un confinement dominant dans la direction perpendiculaire. Les grands facteurs g et le caractère unidimensionnel balistique sont des propriétés favorables à la réalisation de fermions de Majorana. Enfin, j'ai commencé à explorer le potentiel des hétérostructures à base de Ge pour la réalisation de dispositifs à points quantiques, en visant des applications en calcul quantique à base de spin. Au cours des derniers mois, j'ai pu observer des signes évidents de transport à un seul trou, posant ainsi les bases pour des études plus approfondies sur les points quantiques des trous
Physique quantique et électrostatique auto-cohérentes by Pacôme Armagnat( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Electrostatic energy is very often the largest energy scale in quantum nanoelectronic systems. Yet, in theoretical work or numerical simulations, the electrostatic landscape is equally often taken for granted as an external potential, which may result in a wrong physical picture. Developing numerical tools that can properly handle the electrostatics and its interplay with quantum mechanics is of utter importance for the understanding of quantum devices in e.g. semi-conducting or graphene like materials.This thesis is devoted to the self-consistent quantum-electrostatic problem. This problem (also known as Poisson-Schr"odinger) is notoriously difficult in situations where the density of states varies rapidly with energy. At low temperatures, these fluctuations make the problem highly non-linear which renders iterative schemes deeply unstable. In this thesis, we present a stable algorithm that provides a solution to this problem with controlled accuracy. The technique is intrinsically convergent including in highly non-linear regimes. Thus, it provides a viable route for the predictive modeling of the transport properties of quantum nanoelectronics devices.We illustrate our approach with a calculation of the differential conductance of a quantum point contact geometry.We also revisit the problem of the compressible and incompressible stripes in the integer quantum Hall regime. Our calculations reveal the existence of a new ”hybrid” phase at intermediate magnetic field that separate the low field phase from the high field stripes.In a second part we construct a theory that describes the propagation of the collective excitations (plasmons) that can be excited in two-dimensional electron gases. Our theory, which reduces to Luttinger liquid in one dimension can be directly connected to the microscopic quantum-electrostatic problem enabling us to make predictions free of any free parameters. We discuss recent experiments made in Grenoble that aim at demonstrating electronic flying quantum bits. We find that our theory agrees quantitatively with the experimental data
Commutation ultrarapide de microcavités semiconductrices pour des applications à l'optique quantique by Tobias Sattler( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

The all-optical injection of free charge carriers into a semiconductor material can change the resonance frequency of an optical microcavity within few picoseconds and allows an ultrafast modification of light-matter interaction. In this PhD thesis, we study the switching of different types of cavities based on GaAs/AlAs materials and explore possible applications.When the resonance wavelength of a cavity is shifted on a timescale shorter than its storage time, the frequency of the stored light is up-converted. In this work, we study this effect experimentally for high Q planar microcavities, able to store light during several tens of picoseconds. Upon ultrafast switching, we observe a large frequency shift (around 17 mode linewidths) of stored light.In agreement with numerical simulations, we evidence an adiabatic behavior and an efficiency close to 100% for this conversion process.When embedded in a cavity, quantum dots can serve as an internal light source for probing cavity modes and their switching dynamics. We use this approach to study two different kinds of microcavities.On one hand, we inject an inhomogeneous distribution of free charge carriers into micropillars, whose interest for quantum optics experiments is well recognized. We observe drastically different switching behaviors for their cavity modes, due to the different overlaps between free carriers and field intensity distributions. This behavior is understood in a quantitative way on the basis of simulations taking into account the diffusion and recombination of electron-hole pairs.On the other hand, we explore the properties of a novel type of microcavity, ovoid ring resonators. We present a characterization of their optical properties, as well as switching experiments. These objects offer appealing perspectives for the fabrication of microlasers, and for quantum optics experiments such as controlling the Purcell effect in real time
Quasi-ordre à longue distance et défauts topologiques dans le graphène sur rhénium étudié par microscopie à effet tunnel by Alexandre Artaud( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

The discovery of graphene in 2004 is a two-fold breakthrough in condensed matter physics. On the one hand, its electronic properties are that of a massless Dirac fermion gas. On the other hand, its structure is the very first example of an ordered material in two dimensions.This second characteristics is studied in this thesis by scanning tunneling microscopy (STM), in the case of graphene grown in ultra-high vacuum on the (0001) surface of rhenium. In two dimensions, crystalline order is indeed impossible, and it is predicted to be replaced by a quasi-long-range order, for which the phase of the order parameter fluctuates. The rhenium substrate then acts as an outside influence that can restore crystalline order, as it forces graphene's structure to adopt an epitaxial relation with rhenium.The study of graphene's structure proposed here proves it actually originates from kinetic constraints inherited from its growth. Many typical nanostructures have indeed been identified at the atomic scale, giving access to the growth mechanism. Two reaction pathways compete. The first one gives rise to a family of metastable carbon clusters with well-defined structures in epitaxy on rhenium. The second one leads to growing graphene islands of a few nanometers in size. The coalescence of these islands and the incorporation of the carbon clusters ends up forming structural defects whose atomic structure is detailed for the first time. This exhaustive study reveals reaction pathways in the growth of graphene on rhenium are diverse, and constitute compromises between kinetics and thermodynamics.At the end of that growth, the obtained graphene is not uniform, but made of roughly 10 nm-large domains. Each domain displays a specific epitaxial relation with rhenium, in which graphene is both twisted and sheared with respect to rhenium, as revealed a STM image analysis method developed for this purpose. Elaborating a universal classification of such epitaxial relations shows they are very diverse. Two interpretations of this morphology are possible. The graphene domain walls can indeed be interpreted as topological defects in the crystalline order set in graphene by the rhenium substrate. Otherwise, they are fluctuation modes whose dynamics is frozen by the interaction with the substrate. These results put into question the notion of crystalline order set by a substrate to a two-dimensional material. They show that instead of forcing a specific epitaxial relationship, the graphene-substrate interaction gives rise to a so-called chaotic phase
Transport mono-électronique et détection de dopants uniques dans des transistors silicium by Mathieu Pierre( Book )

2 editions published in 2010 in French and held by 2 WorldCat member libraries worldwide

We present low temperature electronic transport measurements in silicon-on-insulator nano-MOSFETs. Their electrical properties depend in particular on the junctions between the reservoirs and the transistor channel, determined during fabrication by the spacers deposited on both sides of the gate. The behaviour differences are emphasized at low temperature. In ultra-scaled transistors, with a typical gate length of 30 nm, dopants diffusion during activation annealing can result in a single dopant well coupled to the reservoirs located in the middle of the channel, below the gate. It is revealed at low temperature below the transistor threshold by resonant tunnelling through its energy levels. An estimation of its ionization energy gives an enhanced value as compared to the bulk value, attributed to the dielectric confinement of the donor. On the contrary, electrons can be confined in the transistor channel by high enough access resistances. Thus samples turn at low temperature into single electron transistors, with the island located below the gate. It is extended to coupled dots systems, by depositing several gates between source and drain. Their behaviour depends on the distance between gates and on spacers length. These systems are used to transfer a single electron
Croissance confinée de nanofils/nanotubes métalliques : élaboration et intégration dans les cathodes des PEMFC by Olivier Marconot( )

1 edition published in 2016 in French and held by 2 WorldCat member libraries worldwide

The two main drawbacks of Proton Exchange Membrane Fuel Cells (PEMFC) are the low electrode durability and the high platinum loading (electrocatalyst for oxygen reduction reaction). Currently, PEMFC electrodes, named as Pt/C, are made of platinum nanoparticles supported by carbon nanoparticles. The aim of this PhD work is to propose, elaborate and test in complete fuel cell new electrode nanostructure consists in self-supported platinum nanotubes. We target a reduction in the platinum loading and an increase in the electrode durability. In order to control nanostructure geometries, a porous alumina mold is used. This template is obtained by electrochemical anodization and vertically aligned nanopores are obtained. Platinum is subsequently deposited onto pore walls by e-beam evaporation or electrochemical deposition processes. After the hot pressing of the Nafion® proton exchange membrane, the porous alumina mold is etched and platinum nanotubes are stuck and self-supported onto the membrane. A part of this work is dedicated to the quantification of performances losses of Pt/C electrodes and nanostructured electrodes in complete fuel cell test operating conditions. Nanostructured electrodes exhibit high durability and easy oxygen access on catalyst surface compared to Pt/C electrodes. However, some losses kinetics remains due to the low catalyst specific area
Hole quantum spintronics in strained germanium heterostructures by Patrick Torresani( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

This thesis focuses on low temperature experiments in germaniumbased heterostructure in the scope of quantumspintronic. First, theoretical advantages of Ge for quantum spintronic are detailed, specifically the low hyperfine interaction and strong spin orbit coupling expected in Ge. In a second chapter, the theory behind quantum dots and double dots systems is explained, focusing on the aspects necessary to understand the experiments described thereafter, that is to say charging effects in quantum dots and double dots and Pauli spin blockade. The third chapter focuses on spin orbit interaction. Its origin and its effect on energy band diagrams are detailed. This chapter then focuses on consequences of the spin orbit interaction specific to two dimensional germaniumheterostructure, that is to say Rashba spin orbit interaction, D'Yakonov Perel spin relaxation mechanism and weak antilocalization.In the fourth chapter are depicted experiments in Ge/Si core shell nanowires. In these nanowire, a quantumdot formnaturally due to contact Schottky barriers and is studied. By the use of electrostatic gates, a double dot system is formed and Pauli spin blockade is revealed.The fifth chapter reports magneto-transport measurements of a two-dimensional holegas in a strained Ge/SiGe heterostructure with the quantum well laying at the surface, revealing weak antilocalization. By fitting quantumcorrection to magneto-conductivity characteristic transport times and spin splitting energy of 2D holes are extracted. Additionally, suppression of weak antilocalization by amagnetic field parallel to the quantum well is reported and this effect is attributed to surface roughness and virtual occupation of unoccupied subbands.Finally, chapter number six reportsmeasurements of quantization of conductance in strained Ge/SiGe heterostructure with a buried quantumwell. First the heterostructure is characterized by means ofmagneto-conductance measurements in a Hall bar device. Then another device engineered specifically as a quantum point contact is measured and displays steps of conductance. Magnetic field dependance of these steps is measured and an estimation of the g-factor for heavy holes in germanium is extracted
Supraconductivité et localisation dans des nanofils unidimensionnels d'InSb et d'InAs by Juan Carlos Estrada Saldaña( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

In my thesis, I studied low-temperature electronic transport in semiconductor nanowires coupled to superconductors, with the goal of understanding the requirements to observe Majorana bound states. Unexpectedly, I found dramatic examples of the pervasiveness of spatial localization of electrons even in seemingly ballistic one-dimensional (1D) nanowires. Localization could replicate signatures of one-dimensionality, helicity and Majorana bound states, casting a shadow of doubt on their interpretation.1D nanowires are expected to show plateaus of quantized conductance. Curiously, transport through an InAs nanowire hosting a single-level quantum dot showed that it could mimic the first two spin-resolved plateaus. A measurement of the Josephson supercurrent under magnetic field revealed the ground-state transitions of an electron occupying this level, confirming its localized nature.In the helical regime, a conductance dip is predicted to appear in each of the conductance plateaus. Surprisingly, InSb nanowire devices hosting a quantum dot conducting in parallel with a 1D channel reproduced this signature.The presence of Majorana bound states, in turn, should be revealed by a zero-bias peak (ZBP) in tunnel spectroscopy. In one of the two-path devices mentioned above, when the 1D path was closed, a zero-bias peak emerged inside the superconducting gap under a magnetic field parallel to the nanowire. This ZBP was related to trivial Andreev bound states from the quantum dot in parallel to the 1D channel. In a different experiment done in an InAs nanowire Josephson junction device hosting a quantum dot, a ZBP related to a Josephson supercurrent appeared inside of the superconducting gap as a result of a transition of the ground-state of the dot from a singlet to a doublet.In spite of localization, it was possible to extract some meaningful information about the 1D regime. The role of the gates was major in determining the degeneracy of the subbands in an InSb nanowire with two 1D conduction paths in parallel under magnetic field. Through a direct influence on their threshold voltages, orbital effects, and g-factors, the gate voltage could shift the energies of the subbands and lock them together. Via this mechanism, it was possible to observe a 2e^2/h plateau lasting until very large field without the appearance of a 1e^2/h plateau. The possible existence of two quantum wires in a single nanowire opens the door for novel helical and Majorana bound states of fractional nature.Altogether, these results point to the need of a better understanding of the physics of simpler few-gates short-channel InAs and InSb nanowire superconducting and normal-state devices, before committing to the utterly complex devices that should be fabricated to study and manipulate Majorana bound states, in which signatures of localization could be better hidden. These original results will be published in the coming months in four different articles
Nanofils AlxGa1-xN et AlN pour la réalisation de diodes émettant dans l'UV-C by Alexandra-Madalina Siladie( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Because of their band gap value extending from 0.68 eV (for InN) up to 3.5 eV (GaN) and 6.2 eV (AlN), nitride family is potentially well adapted to the realization of light emitting diodes (LEDs) or detectors in a wavelength range spanning from infrared to ultraviolet. In particular, the possibility to realize devices emitting in the UV C range (200-280 nm) is a current subject of interest, in relation with numerous applications such as air and water sanitization, counterfeiting detection, sensors etc... Contrary to the visible LEDs which exhibit an excellent efficiency (at least for blue emission, which, coupled to a yellow phosphor is at the base of standard white LEDs currently available on the market), UV LEDs efficiency is currently limited to a few percent, as a consequence of the lack of suitable substrates, which results in defective material, and of doping difficulties, which limit current injection. One innovative solution to overcome these difficulties consists of using nanowires (NWs): the remarkable geometry (small diameter) and aspect ratio (height/diameter) of these objects make them favorable to the realization of heterostructures free of extended defects, therefore limiting carrier non radiative recombination. Furthermore, as a major advantage, electrical doping of NWs (type n with Si, type p with Mg) is considerably eased in NWs, as a result of an improved elastic strain relaxation, which significantly pushes away the dopant incorporation limit to values higher than in 2D layers used for conventional UV LEDs to date. The combination of these advantages make UV emitting NWs a subject of intense interest, with the prospect of realizing a breakthrough in efficiency. We are partially funded by an ANR project to explore this road. In this context, the proposed PhD project will consist of growing and fully characterizing the structural and optical properties of AlxGa1-xN/ AlyGa1-yN / AlxGa1-xN NW heterostructures (cathodo- and photo-luminescence, high resolution electron microscopy, atom probe and Kelvin probe measurement, etc...) with the prospect of realizing innovative, highly efficient UV LEDs in the range 240-270 nm. The process of the final structures and their electrical characterization will be performed by CNRS-Néel, after deposition of a doped-diamond upper contact. The work will be mostly performed in the Nanophysics and semiconductor CNRS/CEA group in CEA-INAC, which has an internationally recognized expertise in the academic studies on nitride materials, in close collaboration with several academic groups in France and abroad (CNRS-Néel, CNRS-LPS, University of Valencia....)
Superconducting silicon on insulator and silicide-based superconducting MOSFET for quantum technologies by Anaïs Francheteau( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

L'introduction de la supraconductivité dans des structures de type MOSFET en silicium ouvre de nouvelles perspectives dans la recherche en physique. Dans cette thèse, on s'intéresse aux propriétés de transport électronique au sein d'un MOSFET fabriqué avec des sources et drains supraconducteurs. Afin de garantir la reproductibilité de ces dispositifs, il est important d'intégrer des matériaux supraconducteurs compatibles avec la technologie CMOS exploitant la technologie silicium qui a pour énorme avantage d'être véritablement fiable et mature. L'idée fondamentale est de réaliser un nouveau type de circuit supraconducteur avec une géométrie de type transistor dans lequel un supracourant non dissipatif circulant au sein du dispositif, de la source vers le drain, serait modulé par une tension de grille : un JOFET. Une perspective importante est la réalisation d'un qubit supraconducteur grâce à une technologie parfaitement reproductible et mature. Cependant, à très basse température et avec la diminution de la taille des dispositifs, deux phénomènes a priori antagonistes entrent en compétition, à savoir la supraconductivité qui implique un grand nombre d'électrons condensés dans le même état quantique macroscopique et l'interaction Coulombienne qui décrit des processus de transport à une particule. L'intérêt de l'étude est donc de réaliser de tels transistors afin de mieux comprendre comment ce genre de dispositif hybride peut s'adapter à des propriétés opposées. Dans cette thèse, j'ai étudié deux façons d'introduire la supraconductivité dans nos dispositifs. La première option est de réaliser des sources et drains en silicium rendus supraconducteurs par dopage en bore et recuit laser effectué grâce à des techniques de dopage hors-équilibre robustes et bien maîtrisées. Même si la supraconductivité du silicium très fortement dopé en bore est connue depuis 2006 et son état supraconducteur a été très bien caractérisé sur des couches bidimensionnelles, la supraconductivité du SOI, qui est le substrat initial à la base de certains transistors, n'a jamais encore été testée et étudiée. L'objectif est de pouvoir adapter ces techniques de dopage au SOI afin de le rendre supraconducteur et de pouvoir l'intégrer par la suite dans des dispositifs de type MOSFET. La seconde option considérée est la réalisation de source et drain à base de siliciures supraconducteurs tel que le PtSi. Ce siliciure est intéressant du point de vue de sa température critique relativement haute de 1K. D'un point de vue technologique, les MOSFETs à barrière Schottky présentant des contacts en PtSi supraconducteur ont été élaborés au CEA/LETI. Les mesures à très basse température au sein d'un cryostat à dilution ont mis en évidence cette compétition entre la supraconductivité et les effets d'interaction Coulombienne et ont également révélé la supraconductivité dans le MOSFET comportant des contacts en PtSi grâce notamment à l'observation du gap induit dans le dispositif
Photonique Josephson : génération & amplification micro-ondes en régime quantique by Florian Blanchet( )

1 edition published in 2018 in English and held by 2 WorldCat member libraries worldwide

The recent field of Josephson photonics is about the interplay between circuit quantum electrodynamic and dynamical Coulomb blockade. It explains and studies the ability of a Cooper pair to inelasticity tunnel through a DC-biased Josephson junction by dissipating the Cooper pair energy in the electromagnetic environment of the junction in the form of photons.This thesis focuses on two aspects of the Josephson photonics:• Control over the statistics of the emitted photons with focus on Generation of non-classical photons;• Stimulated emission of photons leading to Amplification with added noise at the quantumlimit.These devices are powered with a simple DC voltage used to biased the Josephson junction. Such devices can be a new solution in a frequencies range where only few simple alternative solutions are now available.We have studied our devices with two theories, P-theory and input output theory, to derive working characteristics of our devices : Photon rate, gain, noise, bandwidth, compression point. The measured samples are made of niobium nitride and the electromagnetic environment of the junction is engineered to fulfil our needs. The possibility to select the photonic processes at will by engineering the electromagnetic environment permits to imagine further devices: other types of sources, wideband amplifiers, photon detectors
Hétérostructures GaN/Al(Ga)N pour l'optoélectronique infrarouge : orientations polaires et non-polaires by Caroline Botum Lim( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

Les transitions intersousbandes (ISB) sont des transitions d'énergie entre des états électroniques dans un puits quantique. Les nanostructures GaN/AlGaN sont prometteuses pour le développement de composants optoélectroniques ISB pouvant couvrir la totalité de la gamme infrarouge. Leur large décalage de bande de conduction (~1.8 eV pour les systèmes GaN/AlN) et temps de vie ISB inférieurs au picoseconde les rendent attractifs pour l'optronique ultra-rapide en régime infrarouge courte longueur d'onde (SWIR, 1-3 µm) et moyenne longueur d'onde (MWIR, 3-8 µm). De plus, la grande énergie de phonon longitudinal-optique du GaN (92 meV, 13 µm) offre la possibilité de développer des composants ISB couvrant la bande 5-10 THz, interdite au GaAs, et opérant à température ambiante.Le travail décrit dans ce manuscrit a eu pour objectif d'améliorer les performances des technologies ISB GaN/AlGaN et de contribuer à une meilleure compréhension des problématiques posées par leur extension à la gamme des THz. D'une part, la photodétection ISB nécessite le dopage n des nanostructures. Dans ce travail de thèse, on étudie le Si et le Ge en tant que dopants de type n potentiels pour le GaN. D'autre part, la présence de champs électriques internes dans la direction de confinement des hétérostructures plan c constitue l'un des principaux défis de la technologie GaN ISB. C'est pourquoi on étudie la possibilité d'utiliser des orientations cristalline non-polaires a ou m alternatives pour obtenir des systèmes opérant sans l'influence de ces champs électriques.Concernant l'étude du Ge et du Si comme dopants potentiels, on montre que l'incorporation de Ge dans des couches mince de GaN n'affecte pas leur morphologie, mosaïcité ni photoluminescence. Les propriétés bande-à-bande des nanostructures GaN/AlGaN plan c étudiées sont indifférentes à la nature du dopant, mais les structures à grand désaccord de maille voient leur qualité structurale améliorée par le dopage Ge. Concernant l'alternative non-polaire, on compare des structures à multi-puits quantiques GaN/AlN plan a et plan m. Les meilleurs résultats en termes de performances structurales et optiques (bande-à-bande et ISB) sont obtenues pour les structures plan m. Elles montrent de l'absorption ISB à température ambiante couvrant la fenêtre SWIR, avec des performances comparables aux structures plan c, mais avec une qualité structurale trop faible pour envisager la fabrication de composants. En incorporant du Ga dans les barrières d'AlN, on réduit de désaccord de maille et donc la densité de fissures. Ces structures plan m montrent de l'absorption ISB à température ambiante dans la gamme MWIR 4.0-4.8 µm, mais présentent toujours des défauts de structure. Finalement, on a étendu l'étude à la gamme lointain infrarouge, en utilisant des barrières d'AlGaN avec une composition bien plus basse en Al. Les structures plan m étudiées présentent une excellente qualité cristalline, sans défauts de structures, et présentent de l'absorption intersousbande à basse température entre 6.3 et 37.4 meV (1.5 et 9 THz). Ce résultat constitue une démonstration expérimentale de la faisabilité de composants GaN opérant dans la bande 5-10 THz, interdite aux technologies GaAs
Diffusion quantique au-delà des systèmes quasi-unidimensionnels by Mathieu Istas( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Simulations in the field of quantum nanoelectronics are often restricted to a quasi one-dimensional geometries where the device is connected to the macroscopic world with one-dimensional electrodes. This thesis presents novel numerical methods that lift many of these restrictions, in particular rendering realistic simulations of three-dimensional systems possible.The first part introduces a robust and efficient algorithm for computing bound states of infinite tight-binding systems that are made up of a scattering region connected to semi-infinite leads. The method is formulated in close nalogy to the wave-matching approach used to compute the scattering matrix. It also allows one to calculate edge or surface states, e.g. the so-called Fermi arcs.The second part is dedicated to a new numerical method, based on the Green's function formalism, that allows to efficiently simulate systems that are infinite in 1, 2 or 3 dimensions and mostly invariant by translation. Compared to established approaches whose computational costs grow with system size and that are therefore plagued by finite size effects, the new method allows one to directly reach the thermodynamic limit. It provides a practical route for simulating 3D setups that have so far remained elusive.Both methods are illustrated by applications to several quantum systems(a disordered two-dimensional electron gas, a graphene device...) and topological materials (Majorana states in 1D superconducting nanowires, Fermi arcs in 3D Weyl semimetals...). The last application (resilience of Fermi arcs to disorder) combines all the algorithms that were introduced in this thesis
Croissance par épitaxie par jets moléculaires et caractérisation optique d'hétérostructures de nanofils GaN/AlGaN émettant dans l'ultraviolet by Matthias Belloeil( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

Using specific growth conditions, AlGaN nanowire (NW) sections can be grown in epitaxy on top of GaN NW templates. Such NW growth, performed by plasma-assisted molecular beam epitaxy in the present case, allows the subsequent characterization of very small volume of material free of extended defects commonly observed in planar structures. This absence of defects makes these NWs very promising for optoelectronic devices operating in the ultraviolet. However, achieving such devices requires a better understanding of the NW fundamental properties.The issue of alloy inhomogeneity at nanoscale has notably remained obscure so far. In order to make it clearer, the latter has been first investigated in the present work, especially through optical characterization. For our experiments, non-intentionally doped (NID) AlGaN NWs have been grown in various conditions in order to potentially tune the compositional fluctuations within the AlGaN alloy and therefore possibly probe for carrier localization centers of different size and Al composition. It has been firstly observed through structural characterization that the length of Al-rich sections preferentially nucleating on top of GaN NWs can be tuned by varying the growth kinetical parameters, emphasizing a growth mechanism governed by kinetics. Optical studies have then evidenced that compositional fluctuations induce carrier localization and exhibit a quantum dot-like behavior. The latter has been observed whatever the growth conditions explored in this work. Our results are consistent with the spontaneous formation during growth of tiny Ga-richer regions shown to share similar micro-optical features over a given emission wavelength range for all investigated growth conditions. Such regions exhibiting the single-photon emission character are present at very small scale, as signs of their existence have been also evidenced in thin NID AlGaN quantum disks.In addition, doping in Al(Ga)N NW, especially p-type, is far from being fully comprehended. In particular, the issue of dopant incorporation as well as optical and electrical activation in such NWs remains unclear. The latter has been examined in Al(Ga)N NW pn junctions doped with Mg and Si atoms. First, signatures specific to dopant incorporation in NWs have been highlighted through structural characterization, before evidencing AlGaN pn junctions electrically. Moreover, optical analysis have exhibited optically active both dopant types. Nonetheless, Mg dopants are but partially active electrically due to passivation by hydrogen emphasized by the observation of Mg-H complexes. To cope with the latter issue, post-growth annealing experiments have been attempted. Concomitantly, AlN NW pn junctions have been also preliminarily investigated and present interesting morphological features. Indeed, deep hollows have been observed in NWs and associated with Mg doping carried out at low growth temperature. The NW morphology can be tuned by varying growth kinetical parameters and by using the surfactant effect of Mg atoms. When increasing growth temperature, these hollows disappear, while the NW top shape has been observed to switch from hexagonal to star-like, emphasizing growth conditions very far from thermodynamical equilibrium. Electrical activation of dopants has not been evidenced so far in AlN NW pn junctions
Etude de l'injection et détection de spin dans le silicium et germanium : d'une mesure locale de l'accumulation à la détection non locale du courant de spin by Fabien Rortais( )

1 edition published in 2016 in French and held by 2 WorldCat member libraries worldwide

Since the discovery of the giant magnetoresistance in 1988 by the group of Albert Fert (Nobel Prize in 2007), the field of spintronics has been growing very fast due to its potential applications in micro-electronics.For almost 20 years, it has been proposed to introduce the spin degree of freedom directly in the semiconducting materials. Spintronics aims at using not only the charge of carriers (electrons and holes) but also their intrinsic spin degree of freedom. In that case, spins might be manipulated with electric fields. By using both charge and spin, one might add new functionalities to traditional micro-electronic devices.Indeed, the first challenge of semiconductor spintronics is to create and detect a spin polarized carrier population in traditional semiconductors like Si and Ge to further manipulate them.For this purpose, we have used hybrid ferromagnetic metal/insulator/semiconductor devices which allow us to perform electrical spin injection and detection. The first part of this thesis deals with 3 terminal devices grown on different substrates and in which a single ferromagnetic electrode is used to inject and detect spin polarized electrons using the Hanle effect. A spin signal amplification is measured experimentally as compared to the value from the theoretical diffusive model, this raised a controversy concerning 3 terminal measurements. We demonstrate that localized defects in the tunnel barrier cannot be at the origin of the measured MR signal and spin signal amplification. Instead, we show that the presence of interface states is the origin of the spin signal amplification in all the substrates. By using a proper surface preparation and the MBE growth of the magnetic tunnel junctions, we reduce the density of interface states and show a significant modification of the spin signals.In a second part, we present the transition from 3 terminal measurements to lateral spin valves on semiconductors. In the last configuration by using two ferromagnetic electrodes, charge and spin currents are decoupled in order to avoid any spurious magnetoresistance artefacts. Using epitaxially grown magnetic tunnel junctions we can prove the spin injection in silicon and germanium. Especially, we are able to measure non local spin signals in germanium up to room temperature.Finally, we study the spin Hall effect in gallium arsenide and germanium substrates. For this propose we induce spin accumulation using the spin Hall effect (i.e spin-orbit coupling) and probe it using muon spectroscopy. We demonstrate, at low temperature the presence of spin accumulation by the coupling between nuclear spins and the electron spin accumulation
Multiplication de photons dans le domaine du micro-onde grâce au tunneling inélastique de paires de Cooper by Romain Albert( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Durant les quinze dernières années, un grand nombre d'expériences d'optique quantique ont été reproduites dans le domaine des micro-ondes. Ces expériences ont été rendues possible grâce au couplage fort entre les champs électromagnétiques et jonctions Josephson au sein de circuits intégrés supraconducteurs.Cette thèse démontre l'existence d'un processus de conversion d'un photon micro-onde vers plusieurs photons avec une fréquence différente. Cette photo-multiplication n'impose théoriquement pas d'ajout de bruit, au contraire d'une amplification non sensible à la phase. Ce processus peut donc être à la base d'un détecteur de photon unique simple, ce qui n'existe pas encore dans le domaine des micro-ondes.Pour obtenir une photo-multiplication efficace, un couplage non-linéaire fort est nécessaire. Nous avons conçu des résonateurs avec une grande impédance caractéristique et les avons couplés avec des jonctions Josephson polarisées avec une tension continue, la jonction étant à l'origine de la non-linéarité nécessaire. Ces résonateurs sont constitués par des bobines planes. Ils sont fabriqués simultanément avec les jonctions Josephson au sein d'un procédé utilisant une tri-couche de niobium. Ce procédé permet la fabrication de jonctions SIS de faible capacité parasite.Expérimentalement, nous avons mesuré une conversion d'un photon vers deux photons avec une efficacité de 90 % et observé la conversion d'un photon vers trois photons, en accord avec la théorie. En principe, ce processus peut être répété pour mettre au point un détecteur de photon-unique, distinguant le nombre de photons simultanés en entrée. Un tel détecteur serait constitué d'au moins deux étages de photo-multiplication puis d'un amplificateur limité quantiquement en sortie
The inelastic Cooper pair tunneling amplifier (ICTA) by Salha Jebari( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

Les amplificateurs paramétriques Josephson (JPA) se sont révélés être un outil indispensablepour l'étude expérimentale de dispositifs quantiques dans le régime micro-onde ; car ilsrajoutent uniquement le minimum de bruit imposé par la mécanique quantique[1]. Cependant,ces amplificateurs sont beaucoup plus difficiles à utiliser et optimiser que leurs homologuesclassiques. Récemment, plusieurs expériences réalisées avec des circuits supraconducteurs,composés d'une jonction Josephson polarisée en tension en série avec un résonateur microonde,ont montré qu'une paire de Cooper peut traverser la barrière de la jonction par effettunnel en émettant un ou plusieurs photons avec une énergie totale de 2e fois la tensionappliquée. Dans cette thèse, nous montrerons qu'un tel circuit permet de mettre en place unamplificateur micro-onde préservant la phase que nous appelons « Amplificateur basé sur letunneling inélastique de paires de Cooper » (ICTA). Il est alimenté par une tension continueet peut fonctionner avec un bruit très proche de la limite quantique.Nous commencerons en présentant le principe du fonctionnement de l'ICTA. Par analogieavec la théorie quantique des JPAs[2], nous avons étudié les performances de cet amplificateurcomme le gain, la bande passante et le bruit. Ensuite, nous présenterons la premièrepreuve expérimentale d'une amplification proche de la limite quantique sans utilisation d'unepompe micro-onde externe, mais simplement d'une tension continue dans une configurationextrêmement simple. Ces mesures ont été faites sur des échantillons avec des jonctionsen aluminium, dénommés ICTA de première génération. Selon nos résultats théoriques etexpérimentaux, nous avons conçu des circuits hyperfréquences où l'impédance présentéeà la jonction dépend de fréquences spécifiques afin d'optimiser les performances de notreamplificateur. Ces échantillons, dénommés ICTA de seconde génération, ont été fabriquésavec du nitrure de niobium. Une amélioration significative du gain et du bruit a été prouvée.Un tel amplificateur, alimenté par une simple tension continue, pourrait rendre la mesurede signaux micro-ondes au niveau du photon unique beaucoup plus faciles et permettred'intégrer plusieurs amplificateurs sur une seule puce. Il pourrait donc être un élémentimportant pour la lecture de qubit dans les processeurs quantiques à grande échelle
Quantum coherent phenomena in disordered transition metal dichalcogenide monolayers by Stefan Ilic( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Les monocouches de dichalcogénures de métaux de transition (TMDC) sont des matériaux bidimensionnels découverts récemment. Ils possèdent un fort couplage spin-orbite (SOC) intrinsèque qui agit comme un champ Zeeman effectif perpendiculaire, mais avec des orientations opposées dans chaque vallée située autour des points +K et -K de la zone Brillouin. En présence de désordre, ce SOC influence fortement les phénomènes quantiques cohérents dans les TMDC. Dans cette thèse, nous étudions deux de ces phénomènes : la supraconductivité et les corrections à la conductance dues aux interférences quantiques, telles que la localisation ou l'anti-localisation faible, ainsi que les fluctuations universelles de la conductance.Une supraconductivité a été identifiée expérimentalement dans plusieurs TMDC, aussi bien dans les régimes dopés n (MoS2, WS2) que p (NbSe2, TaS2). Dans ces matériaux, le SOC intrinsèque provoque un "appariement d'Ising" inhabituel des paires de Cooper. En effet, celles-ci sont formées avec des électrons provenant de vallées opposées, donc leurs spins sont figés perpendiculairement à la couche. Un champ magnétique appliqué parallèlement à la couche n'est donc pas efficace pour briser les paires de Cooper par l'effet paramagnétique, ce qui entraîne une augmentation considérable du champ critique dans le plan. C'est la signature principale de la supraconductivité d'Ising. Dans la première partie de ce travail, nous calculons le champ critique et la densité des états dans les TMDC supraconducteurs désordonnés. Nous montrons que la diffusion intra-vallée n'affecte pas ces propriétés. En revanche, elles dépendent fortement de la diffusion inter-vallée qui produit un mécanisme de brisure des paires de Cooper. Dans les supraconducteurs Ising dopés p, dans lesquels plusieurs bandes croisent le niveau de Fermi, nous identifions la diffusion inter-bande comme un autre mécanisme important de brisure des paires. Nous montrons qu'une faible diffusion inter-vallée ou inter-bande peut expliquer les observations expérimentales dans les supraconducteurs TMDC dopés n ou p, respectivement.Dans la deuxième partie de ce travail, nous calculons les corrections à la conductance dues aux interférences quantiques dans les TMDC métalliques. Leur mesure peut servir de sonde indépendante pour identifier la nature du SOC et du désordre. En raison de l'interaction entre la structure de la vallée et le SOC, ces matériaux présentent un riche comportement de localisation (ou anti-localisation) faible et des fluctuations universelles de la conductance, qui sont qualitativement différents des autres systèmes bidimensionnels, comme les métaux conventionnels ou le graphène. Nos résultats peuvent également être utilisés pour décrire les hétéro-structures graphène/TMDC, dans lesquelles le SOC est induit dans la couche de graphène. Nous discutons différents régimes de paramètres qui permettent d'interpréter des expériences récentes et d'évaluer l'intensité du SOC et du désordre. En outre, nous montrons qu'un champ Zeeman dans le plan peut être utilisé pour distinguer les contributions de différents types de SOC à la localisation ou l'anti-localisation faible
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.00 (from 0.00 for Supracondu ... to 0.00 for Supracondu ...)

Alternative Names
CEA-G/INAC/PHELIQS

PHELIQS

UMR_E 9002

Unité Mixte de Recherche CEA 9002

Languages
English (17)

French (4)