WorldCat Identities

Odén, Magnus

Works: 75 works in 85 publications in 1 language and 86 library holdings
Genres: Conference papers and proceedings 
Roles: Author, Other, Thesis advisor, Opponent, Editor, the
Publication Timeline
Most widely held works by Magnus Odén
The fifth international conference on residual stresses by International Conference on Residual Stresses( Book )

5 editions published between 1997 and 1998 in English and held by 9 WorldCat member libraries worldwide

Residual stress and plastic deformation of Al2O3-SiC composites, and nanoindentation studies of single crystal TiN by Magnus Odén( Book )

4 editions published in 1995 in English and held by 5 WorldCat member libraries worldwide

Site description of the SFR area at Forsmark at completion of the site investigation phase : SDM-PSU Forsmark by Magnus Odén( Book )

1 edition published in 2013 in English and held by 2 WorldCat member libraries worldwide

The Effect of Cathodic Arc Guiding Magnetic Field on the Growth of (Ti0.36Al0.64)N Coatings by Ana B. B Chaar( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

X-ray photoelectron spectroscopy studies of Ti1-xAlxN (0 <= x <= 0.83) high-temperature oxidation: The crucial role of Al concentration by Grzegorz Greczynski( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

The resistance to high-temperature oxidation of Ti1-xAlxN films determines performance in numerous applications including coated cutting tools. Here, we present a comprehensive study covering Ti1-xAlxN films with 0 amp;lt;= x amp;lt;= 0.83 annealed in air for 1 h at temperatures T-a ranging from 500 to 800 degrees C. Layers are grown by the combination of high-power impulse and dc magnetron sputtering (HiPIMS/DCMS) in Ar/N-2 atmospheres. We use X-ray photoelectron spectroscopy to study the evolution of surface chemistry and to reconstruct elemental distribution profiles. No dependence of oxidation process on the phase content, average grain size, or preferred orientation could be confirmed, to the accuracy offered by the employed X-ray diffraction techniques. Instead, our results show that, under the applied test conditions, the Ti1-xAlxN oxidation scenario depends on both x and T-a. The common notion of double-layer Al2O3/TiO2 oxide formation is valid only in a limited region of the x-T-a parameter space (Type-1 oxidation). Outside this range, a mixed and non-conformal Al2O3-TiO2 layer forms, characterized by larger oxide thickness (Type-2 oxidation). The clear distinction between different Ti1-xAlxN oxidation scenarios revealed here is essential for numerous applications that can benefit from optimizing the Al content, while targeting a given operational temperature range
Preparation and firing of a TiC/Si powder mixture by EEIGM/AMASE/FORGEMAT conference on Advanced Materials Research : 04/11/2009 - 05/11/2009( )

1 edition published in 2009 in English and held by 1 WorldCat member library worldwide

This paper describes how the preparation and heat treatment of TiC/Si powders influences the phase reactions during firing. The powders are prepared by milling and some effects of powder preparation are discussed. A solid state displacement reaction according to: 3TiC + 2Si → Ti3SiC2 + SiC is a priori expected to take place during heat treatment. The firing procedure is investigated with respect to the effect of heat treatment time and temperature on the phases produced, especially Ti3SiC2. Samples were heat treated in a graphite lined furnace. Heat treated samples are analysed by x-ray diffraction, scanning electron microscope and energy dispersive spectroscopy. Ti3SiC2, TiC and SiC are dominant in the final products. The highest amount of Ti3SiC2 is achieved for short holding times (2-4 hours) at high temperatures (1350-1400°C). Ti3SiC2 appears to decompose at elevated temperatures or extended times, through a Ti3SiC2 → TiC + Si(g) type reaction. The activation energy of Ti3SiC2 phase formation is determined to be 289 kJ/mol, using the Mehl-Avrami-Johnson model
Strain evolution during spinodal decomposition of TiAlN thin films by Lina Rogström( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

We use a combination of in-situ x-ray scattering experiments during annealing and phase-field simulations to study the strain and microstructure evolution during decomposition of TiAlN thin films. The evolved microstructure is observed to depend on composition, where the larger elastic anisotropy of higher Al content films causes formation of elongated AlN and TiN domains. The simulations show strain formation in the evolving cubic-AlN and TiN domains, which is a combined effect of increasing lattice mismatch and elastic incompatibility between the domains. The experimental results show an increased compressive strain in the TiAlN phase during decomposition due to the onset of transformation to hexagonal-AlN
Single-pot synthesis of ordered mesoporous silica films with unique controllable morphology by Emma M Björk( )

1 edition published in 2014 in English and held by 1 WorldCat member library worldwide

Mesoporous silica films consisting of a monolayer of separated SBA-15 particles with unusually wide and short pores grown on silicon wafers have been fabricated in a simple single-pot-synthesis, and the formation of the films has been studied. A recipe for synthesizing mesoporous silica rods with the addition of heptane and NH 4 F at low temperature was used and substrates were added to the synthesis solution during the reaction. The films are ∼90 nm thick, have a pore size of 10.7-13.9 nm depending on the hydrothermal treatment time and temperature, and a pore length of 200-400 nm. All pores are parallel to the substrate, open, and easy to access, making them suitable for applications such as catalyst hosts and gas separation. The growth of the films is closely correlated to the evolution of the mesoporous silica particles. Here, we have studied the time for adding substrates to the synthesis solution, the evolution of the films with time during formation, and the effect of hydrothermal treatment. It was found that the substrates should be added within 30-60 s after turning off the stirring and the films are formed within 10 min after addition to the synthesis solution. The study has yielded a new route for synthesizing mesoporous silica films with a unique morphology
Growth of Hard Amorphous Ti-Al-Si-N Thin Films by Cathodic Arc Evaporation by Hanna Fager( )

1 edition published in 2013 in English and held by 1 WorldCat member library worldwide

Residual stress evolution during decomposition of Ti(1-x)Al(x)N coatings using high-energy X-rays by European Conference on Residual Stresses : 13/09/2006 - 15/09/2006( )

1 edition published in 2006 in English and held by 1 WorldCat member library worldwide

Residual stresses and microstructural changes during phase separation in Ti33Al67N coatings were examined using microfocused high energy x-rays from a synchrotron source. The transmission geometry allowed simultaneous acquisition of x-ray diffraction data over 360° and revealed that the decomposition at elevated temperatures occurred anisotropically, initiating preferentially along the film plane. The as-deposited compressive residual stress in the film plane first relaxed with annealing, before dramatically increasing concurrently with the initial stage of phase separation where metastable, nm-scale c-AlN platelets precipitated along the film direction. These findings were further supported from SAXS analyses
Nanofibrillated Cellulose-Based Electrolyte and Electrode for Paper-Based Supercapacitors( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

Abstract: Solar photovoltaic technologies could fully deploy and impact the energy conversion systems in our society if mass-produced energy-storage solutions exist. A supercapacitor can regulate the fluctuations on the electrical grid on short time scales. Their mass-implementation requires the use of abundant materials, biological and organic synthetic materials are attractive because of atomic element abundancy and low-temperature synthetic processes. Nanofibrillated cellulose (NFC) coming from the forest industry is exploited as a three-dimensional template to control the transport of ions in an electrolyte-separator, with nanochannels filled of aqueous electrolyte. The nanochannels are defined by voids in the nanocomposite made of NFC and the proton transporting polymer polystyrene sulfonic acid PSSH. The ionic conductivity of NFC-PSSH composites (0.2 S cm -1 at 100% relative humidity) exceeds sea water in a material that is solid, feel dry to the finger, but filled of nanodomains of water. A paper-based supercapacitor made of NFC-PSSH electrolyte-separator sandwiched between two paper-based electrodes is demonstrated. Although modest specific capacitance (81.3 F g -1), power density (2040 W kg -1) and energy density (1016 Wh kg -1), this is the first conceptual demonstration of a supercapacitor based on cellulose in each part of the device; which motivates the search for using paper manufacturing as mass-production of energy-storage devices. Abstract : Composite of nanofibrillated cellulose and polystyrene sulfonic acid forms a new material that combines the function of electrolyte and separator for charge storage applications. Together with cellulose poly(3, 4-ethylenedioxythiophene) composite electrodes, nanofibers of cellulose are used as the structural material throughout the whole supercapacitor. This truly paper-based supercapacitor leads to the following question: can a supercapacitor be manufactured with a paper machine?
Characterization of worn Ti-Si cathodes used for reactive cathodic arc evaporation by Jianqiang Zhu( )

1 edition published in 2010 in English and held by 1 WorldCat member library worldwide

The microstructural evolution of Ti1-xSix cathode surfaces (x=0, 0.1, 0.2) used in reactive cathodic arc evaporation has been investigated by analytical electron microscopy and x-ray diffractometry. The results show that the reactive arc operated in N-2 atmosphere induces a 2-12 mu m thick N-containing converted layer consisting of nanosized grains in the two-phase Ti and Ti5Si3 cathode surface. The formation mechanism of this layer is proposed to be surface nitriding and redeposition of macroparticles formed during the deposition process. The surface roughness of the worn Ti1-xSix cathodes increases with increasing Si content, up to 20 at. %, due to preferential erosion of Ti5Si3
Mechanical and thermal stability of hard nitride coatings by Yu-Hsiang Chen( Book )

2 editions published between 2018 and 2019 in English and held by 1 WorldCat member library worldwide

La estabilidad térmica del recubrimiento es esencial debido a que estos recubrimientos durante su aplicación son utilizados a elevada temperatura y a alta velocidad. Durante dicho proceso, la evolución microestructural afecta a las propiedades mecánicas. En dicha tesis, la estabilidad mecánica de los recubimientos duros base nitruro producidos mediante arco y recocidos a elevada temperatura son analizados y se correlacionado con su transformación de fase. La dureza, la resistencia a la fractura son evaluados mediante la observación tanto superficial como transversal mediante microscopia electrónica de barrido. La resistencia a la propagación de grieta de Ti 1− x Al x N con un contenido en Al que fluctúa entre 0.23-0.82 se estudia mediante ensayos de fatiga por contacto, donde la diferencia microstructural juega un papel importante. Las mejores propiedades mecánicas se encentran en las muestras con un 0.63 de Ti donde se ha realizado un proceso de recocido a 900 o C debido a la descomposición espinoidal. Las características mecánicas y de alta temperatura de recubrimientos duros pueden ser mejoradas si tenemos un recubrimiento multicapa. Aleaciones cuaternarias de Ti-Al-X-N (X = Cr, Nb y V) son estudiada, y una mejor tenacidad de fractura se encuentra para la muestra TiAl(Nb)N sin tratamiento de recocido como recocida a 1000ºC. La formación del AlN con una estructura hexagonal en la muestra Ti x Al 0 . 37 Cr 1−0 . 37− x N ( x = 0.03 y 0.16) son analizadas mediante ensayos in-situ de difracción de rayos X durante el proceso de recocido. Cabe mencionar que la energía cinética para la formación de la AlN con una estructura hexagonal depende del proceso de recocido, la cual hace variar la composición química del recubrimiento. Multicapas de h (hexagonal)-ZrAlN/c (cúbica)-TiN con un elevado contenido de Al son estudiadas mediante ensayos de rayado y la generación de daño es observado mediante la técnica del haz de iones focalizados. Las formas de la fase de c-Ti(Zr)N en las multicapas de (h)-ZrAlN/c-TiN formadas a elevadas temperaturas contribuyen a mejorar la dureza y la tenacidad de fractura manteniendo la semicoherencia en las intercaras entre cada capa. Finalmente, se realiza un análisis in-situ de los diferentes recubrimientos me diante dispersión de rayos X durante un proceso de torneado. En este caso, se demuestra la posibilidad de observar la evolución de las tensiones residuales y de la expansión térmica durante el proceso de conformado. Dicho experimentos proporciona información en tiempo real sobre el comportamiento del recubrimiento en condiciones de servicio
A shelf-life study of silica- and carbon-based mesoporous materials by Emma Björk( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

Mesoporous silica- and carbon-based materials, including bioactive glasses, have proven potential as components of medical devices and as drug carriers. From an application perspective, knowledge about the shelf-life stability of these materials under various conditions is vital. Here, mesoporous bioactive glasses (MBGs) synthesized by aerosol-assisted spray-drying and by a batch sol-gel method, mesoporous silicas of SBA-15 type, and mesoporous carbons CMK-1 and CMK-3 have been stored under varying conditions, e.g. at different temperature and relative humidity (RH), and in different storage vessels. The results show that the silica-based materials stored in Eppendorfs are sensitive to humidity. Spray dried MBGs decompose within 1 month at a RH >5%, whilst sol-gel MBGs are more stable up to a RH >60%. Changing the storage vessel to sealed glass flasks increases the MBGs lifetime significantly, with no degradation during 2 months of storage at a RH = 75%. SBA-15 stored in Eppendorfs are more stable compared to MBGs, and addition of F- ions added during the synthesis affects the material degradation rate. Mesoporous carbons are stable under all conditions for all time points. This systematic study clearly demonstrates the importance of storage conditions for mesoporous materials which is crucial knowledge for commercialization of these materials. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of The Korean Society of Industrial and Engineering Chemistry
Microstructural influence of the thermal behavior of arc deposited TiAlN coatings with high aluminum content by Ana Beatriz Broering Chaar( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

The influence of the microstructure on the thermal behavior of cathodic arc deposited TiAlN coatings was studied as a function of isothermal annealing. Two compositionally similar but structurally different coatings were compared, a Ti0.34Al0.66N0.96 coating with a fine-grain structure consisting of a mixture of cubic (c) and hexagonal (h) phases, and a Ti0.40Al0.60N0.94 coating with a coarse-grain structure of cubic phase. By in situ wide-angle synchrotron x-ray scattering, spinodal decomposition was confirmed in both coatings. The increased amount of internal interfaces lowered the decomposition temperature by 50 degrees C for the dual-phase coating. During the subsequent isothermal anneal at 1000 degrees C, a transformation from c-AlN to h-AlN took place in both coatings. After 50 min of isothermal annealing, atom probe tomography detected small amounts of Al (similar to 2 at.%) in the c-TiN rich domains and small amounts of Ti (similar to 1 at.%) in the h-AlN rich domains of the coarse-grained single-phase Ti0.40Al0.60N0.94 coating. Similarly, at the same conditions, the fine-grained dual-phase Ti0.34Al0.66N0.96 coating exhibits a higher Al content (similar to 5 at.%) in the c-TiN rich domains and higher Ti content (similar to 15 at.%) in the h-AlN rich domains. The study shows that the thermal stability of TiAlN is affected by the microstructure and that it can be used to tune the reaction pathway of decomposition favorably. (C) 2020 The Authors. Published by Elsevier B.V
The Effect of Cathodic Arc Guiding Magnetic Field on the Growth of (Ti0.36Al0.64)N Coatings by Ana Beatriz Broering Chaar( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

We use a modified cathodic arc deposition technique, including an electromagnetic coil that introduces a magnetic field in the vicinity of the source, to study its influence on the growth of (Ti0.36Al0.64)N coatings. By increasing the strength of the magnetic field produced by the coil, the cathode arc spots are steered toward the edge of the cathode, and the electrons are guided to an annular anode surrounding the cathode. As a result, the plasma density between the cathode and substrate decreased, which was observed as a lateral spread of the plasma plume, and a reduction of the deposition rate. Optical emission spectroscopy shows reduced intensities of all recorded plasma species when the magnetic field is increased due to a lower number of collisions resulting in excitation. We note a charge-to-mass ratio decrease of 12% when the magnetic field is increased, which is likely caused by a reduced degree of gas phase ionization, mainly through a decrease in N2 ionization. (Ti0.36Al0.64)N coatings grown at different plasma densities show considerable variations in grain size and phase composition. Two growth modes were identified, resulting in coatings with (i) a fine-grained glassy cubic and wurtzite phase mixture when deposited with a weak magnetic field, and (ii) a coarse-grained columnar cubic phase with a strong magnetic field. The latter conditions result in lower energy flux to the coating & rsquo;s growth front, which suppresses surface diffusion and favors the formation of c-(Ti, Al)N solid solutions over phase segregated c-TiN and w-AlN
Significant elastic anisotropy in Ti 1− x Al x N alloys by Ferenc Tasnádi( )

1 edition published in 2010 in English and held by 1 WorldCat member library worldwide

Strong compositional-dependent elastic properties have been observed theoretically and experimentally in Ti 1− x Al x N alloys. The elastic constant, C 11 , changes by more than 50% depending on the Al-content. Increasing the Al-content weakens the average bond strength in the local octahedral arrangements resulting in a more compliant material. On the other hand, it enhances the directional (covalent) nature of the nearest neighbor bonds that results in greater elastic anisotropy and higher sound velocities. The strong dependence of the elastic properties on the Al-content offers new insight into the detailed understanding of the spinodal decomposition and age hardening in Ti 1− x Al x N alloys
Effect of work function and cohesive energy of the constituent phases of Ti-50 at.% Al cathode during arc deposition of Ti-Al-N coatings by Bilal Syed( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

The differences in work function (W.F.) and cohesive energy (C.E.) of the phases constituting the cathode, plays an important role in the formation of the converted layer at its near-surface region during cathodic arc deposition. As a consequence, this also affects the deposition conditions for the coatings. In this study, we explore the effect of W.F. and C.E. of the constituent phases during arc evaporation by utilizing two kinds of customized Ti-50 at.% Al cathodes with different phase compositions. Our results show that during reactive arc evaporation the disparity in W.F. and C.E. among the constituent phases of Ti-50 at.% Al cathodes leads to preferential erosion of the phases with lower W.F. and C.E. The aforementioned preferential erosion begets higher surface roughness on the Ti-50 at.% Al cathode with a wider range of W.F. and C.E. disparity. It is also observed that the thermal conductivity of the Ti-50 at.% Al cathode plays a dominant role in the deposition rate of Ti-Al-N coating. This article also presents how the surface geometry of the cathode in the presence of arc guiding magnetic field significantly influences the microstructure of the deposited coatings
Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization by Didem Sen Karaman( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

In nanomedicine, physicochemical properties of the nanocarrier affect the nanoparticles pharmacokinetics and biodistribution, which are also decisive for the passive targeting and nonspecific cellular uptake of nanoparticles. Size and surface charge are, consequently, two main determining factors in nanomedicine applications. Another important parameter which has received much less attention is the morphology (shape) of the nanocarrier. In order to investigate the morphology effect on the extent of cellular internalization, two similarly sized but differently shaped rod-like and spherical mesoporous silica nanoparticles were synthesized, characterized and functionalized to yield different surface charges. The uptake in two different cancer cell lines was investigated as a function of particle shape, coating (organic modification), surface charge and dose. According to the presented results, particle morphology is a decisive property regardless of both the different surface charges and doses tested, whereby rod-like particles internalized more efficiently in both cell lines. At lower doses whereby the shape-induced advantage is less dominant, charge-induced effects can, however, be used to fine-tune the cellular uptake as a prospective secondary uptake regulator for tight dose control in nanoparticle-based drug formulations
Phase stability and defect structures in (Ti1-x,Alx)Ny hard coatings by Katherine Calamba( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Cette étude met en évidence le rôle des lacunes d'azote et des défauts structuraux dans l'ingénierie de revêtements durs à stabilité de phase améliorée et dont les propriétés mécaniques sont compatibles avec des applications à haute température. Le nitrure de titane et d'aluminium (Ti,Al)N sous forme de revêtements est un matériau de choix pour la protection des outils de coupe pour métaux en raison de sa résistance supérieure à l'oxydation et à l'usure à haute température. La décomposition spinodale à haute température de la phase métastable cubique (Ti,Al)N en domaines cohérents de taille nanométrique de c-TiN et de c-AlN donne une dureté importante aux températures élevées. Un apport thermique encore plus élevé conduit à la transformation de c-AlN en w-AlN, ce qui nuit aux propriétés mécaniques du revêtement. Un moyen de retarder cette transformation est d'introduire des lacunes d'azote. Dans cette thèse, je montre que la combinaison d'une réduction de la teneur globale en azote du revêtement c-(Ti,Al)Ny(y <1) avec une faible tension de polarisation du substrat lors du dépôt par arc cathodique induit un retard encore plus prononcé de la transformation de la phase c-AlN en w-AlN. Dans de telles conditions, le durcissement par vieillissement est conservé jusqu'à 1100 ° C, ce qui correspond à la température la plus élevée signalée pour les films de (Ti,Al)N. Au cours des opérations de coupe, le mécanisme d'usure des films c-(Ti0.52Al0.48)Ny déposés par arc cathodique avec des teneurs en N de y = 0.92, 0.87 et 0.75 est influencé par l'interaction des lacunes d'azote, de la microstructure et des réactions chimiques avec le matériau de la pièce. Le revêtement y = 0.75 contient le plus grand nombre de macroparticules et présente, après usinage, une microstructure non homogène qui en abaisse la résistance à l'usure sur les flancs et les cratères. Le durcissement par vieillissement de l'échantillon y = 0.92 entraîne une résistance supérieure à l'usure sur le flanc, tandis que la structure dense de l'échantillon y = 0.87 empêche l'usure chimique qui se traduit par une excellente résistance à l'usure sur les cratères. Des films hétéroépitaxiés c-(Ti1-x, Alx)Ny (y = 0.92, 0.79 et 0.67) ont été déposés sur des substrats de MgO(001) et (111) en utilisant une technique de pulvérisation magnétron pour examiner en détail les défauts structuraux pendant la décomposition spinodale. À 900 °C, les films se décomposent pour former des domaines cohérents riches en c-AlN et c-TiN de forme allongée le long de la direction <001>. Les cartographies de déformation montrent que la plupart des contraintes se trouvent près de l'interface des domaines ségrégés et à l'intérieur des domaines c-TiN. Les dislocations s'agrègent favorablement dans c-TiN plutôt que dans c-AlN car ce dernier a une directionnalité plus forte des liaisons chimiques covalentes. À température élevée, la taille de domaine des films de c- (Ti, Al)Ny orientés (001) et (111) augmente avec la teneur en azote. Cela indique qu'il y a un retard dans le grossissement dû à la présence de plus de lacunes d'azote dans le film. [...]
moreShow More Titles
fewerShow Fewer Titles
Audience Level
Audience Level
  General Special  
Audience level: 0.92 (from 0.72 for Site descr ... to 0.97 for The fifth ...)

English (28)