WorldCat Identities

Institut Galien Paris-Saclay (Châtenay-Malabry, Hauts-de-Seine / 1998-....).

Overview
Works: 64 works in 64 publications in 2 languages and 66 library holdings
Roles: Other
Publication Timeline
.
Most widely held works by Hauts-de-Seine / 1998-....) Institut Galien Paris-Saclay (Châtenay-Malabry
Development and evaluation of nanoparticles for cancer treatment by Rachel Ouvinha De Oliveira( )

1 edition published in 2014 in English and held by 2 WorldCat member libraries worldwide

This thesis concerns the development and evaluation of nanoparticles for cancer treatment, and in particular to prostate cancer. The manuscript includes a literature review on the application of nanomedicine to the treatment of prostate cancer. In the first experimental part, functionalized gold nanoparticles were characterized and loaded with docetaxel by non covalent adsorption. These gold nanoparticles showed a sustained cytotoxic effect in vitro against prostate cancer cells. The second experimental part of this thesis describes a study of synthesis and nanoprecipitation of polyesters for the co-delivery of two chemotherapeutic drugs, docetaxel (DOC) and mitoxantrone (MIT). Polycaprolactone, poly(lactic acid) and poly (lactide-co-glycolide) were synthesized by ring-opening polymerization with different molecular weights of polyethylene glycol. Monodisperse nanoparticles with diameters of less than 80 nm were produced and were shown to be effective against prostate cancer cells when loaded with MIT and DOC. Moreover, a synergistic effect was observed using combinations of these nanoparticles. Therefore, these polyester based nanoparticles have potential clinical applications
Toxicologie pulmonaire de nanoparticules biodégradables : effets cytotoxiques et inflammatoires sur cellules épithéliales et macrophages by Nadège Grabowski( )

1 edition published in 2013 in French and held by 2 WorldCat member libraries worldwide

Ce projet de thèse se propose d'évaluer le devenir, la cytotoxicité et la réponse inflammatoire pulmonaire in vitro suite à l'exposition aux nanoparticules, et plus particulièrement vis-à-vis de la région alvéolaire.Les nanoparticules étudiées sont formulées à base d'acide poly (lactide-co-glycolide) (PLGA) (polymère biodégradable), stabilisées, ou non, par différents polymères de surface (alcool polyvinylique (PVA), chitosane (CS), pluronic F68 (PF68)). Les nanoparticules ont une taille d'environ 200 nm, et présentent des charges de surface neutre (PLGA/PVA), positive (PLGA/CS) ou négative (PLGA/PF68 et PLGA sans stabilisant). Des nanoparticules non-biodégradables de dioxyde de titane (TiO2) et de polystyrène ont été choisies comme contrôle positif. Pour mimer les conditions alvéolaires, la lignée cellulaire A549 d'épithélium alvéolaire humain a été utilisée en mono-culture et en co-culture en contact direct avec des macrophages différenciés de monocytes humains (lignée THP-1). Les caractérisations phénotypique et microscopique de la co-culture, ont confirmé la présence de deux types cellulaires viables et en contact. Le CD14, récepteur membranaire exprimé uniquement par les macrophages, sera utilisé pour identifier chaque sous-population cellulaire. D'autre part, l'analyse du récepteur CD54 a montré la présence d'interactions intercellulaires en co-culture : exprimé uniquement par les macrophages en mono-culture, il est exprimé par les deux sous-populations cellulaires en co-culture. Ces interactions ont été confirmées lors de la quantification des cytokines sécrétées après exposition au lipopolysaccharide: les niveaux de sécrétions en co-culture étant jusqu'à 5 fois supérieurs aux niveaux théoriques (issus de la somme des sécrétions en mono-culture).L'analyse en microscopie confocale a confirmé que les nanoparticules sont internalisées par chaque type cellulaire, Les cinétiques d'internalisation suivies en cytométrie en flux ont montré que les nanoparticules de charge de surface négative sont internalisées en plus grande quantité que les autres, quelque soit le type cellulaire, en mono ou en co-culture, selon un mécanisme énergie-dépendant. Enfin, en co-culture, les macrophages internalisent davantage de nanoparticules que les cellules épithéliales.La cytotoxicité des nanoparticules a été évaluée par la mesure de l'activité mitochondriale, l'étude de l'intégrité membranaire, et le type de mort cellulaire. Les résultats montrent qu'à faible concentration toutes les nanoparticules de PLGA induisent une cytotoxicité généralement faible (60 à 80 % de viabilité), avec une mort exclusivement nécrotique, sans induire de forts dommages à la membrane. La toxicité des nanoparticules de PLGA/CS peut être expliquée par la toxicité propre du chitosane. A forte concentration, le cas des nanoparticules de PLGA sans stabilisant mérite d'être noté, car elles n'induisent aucune cytotoxicité vis-à-vis des macrophages, contrairement aux nanoparticules stabilisées. La cytotoxicité des nanoparticules de TiO2 est plus importante, mais peu de dommages à la membrane sont causés. La réponse inflammatoire a été évaluée par la quantification des cytokines sécrétées après 24 h d'exposition aux nanoparticules (0,1 mg/mL). En mono-culture, seules les nanoparticules de PLGA/PF68 induisent une réponse inflammatoire sur les cellules A549, corrélée à leur plus grande internalisation. En co-culture, la réponse inflammatoire est peu prononcée. En revanche, ni les polymères de surface ni les nanoparticules de PLGA sans stabilisant, n'induisent de réponse inflammatoire spécifique.Ces résultats montrent la faible toxicité des nanoparticules de PLGA vis-à-vis des conditions alvéolaires, et soulignent l'importance du recouvrement de surface. En conclusion, les nanoparticules de PLGA testées présentent un fort intérêt pour une application biomédicale, modulée par l'ajustement des propriétés de surface
Stratégies de ciblage des macrophages alvéolaires pour l'administration de glucocorticoïdes by Ludmila Pinheiro do nascimento( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

This work focuses on strategies to target glucocorticoids to alveolar macrophages. We have synthesized a budesonide prodrug, budesonide palmitate (BP), increasing its lipophilicity to extend drug half-life in the lungs. BP PEGylated nanoparticles were developed and studied to obtain a stable formulation with suitable physicochemical characteristics and high drug loading to enter alveolar macrophages, key players in lung inflammation. In vitro tests on RAW 264.7 macrophages confirmed the anti-inflammatory activity and absence of cytotoxicity of nanoparticles. These were then encapsulated into Trojan microparticles obtained by spray-drying to facilitate their delivery to the lung as dry powders and release nanoparticles directly to the pulmonary alveoli. Spherical hollow microparticles containing from 0 % to 20 % of BP nanoparticles presented suitable aerodynamic diameters and fine particle fraction for lung delivery. In vivo pharmacokinetic studies demonstrated high and extended budesonide concentrations in the lungs, with low plasma concentrations. In the second part of this thesis, another macrophage targeting strategy was assessed by decoration of nanoparticle surface with mannose. After synthesis of a mannosylated lipid, nanoparticles were formulated and characterized, demonstrating high drug loading and stability up to 30 days. In vitro tests on RAW 264.7 macrophages showed that the presence of mannose on the surface increases nanoparticles internalization 2 fold after 48 h incubation, as compared with PEGylated nanoparticles
Émulsions de Pickering biodégradables stabilisées par des nanoparticules de poly(acide lactique-co-glycolique) : étude physico-chimique et potentialité pharmaceutique by Claire Albert( )

1 edition published in 2017 in French and held by 1 WorldCat member library worldwide

In this thesis work, we formulated stable, biodegradable and biocompatible Pickering emulsions stabilized with nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA). Such emulsions are an alternative, potentially less toxic and irritating, to conventional emulsions stabilized with surfactants. Firstly, a thorough physico-chemical study of these systems was conducted in order to clarify their structures (macroscopic, microscopic and interfacial) as well as their mechanisms and kinetics of stabilization. Studies of the contribution of the polymer stabilizing the NPs and of the characteristics of the PLGA polymer on the properties of the emulsions were also carried out. This enabled a better identification of the physico-chemical key parameters responsible for a good stabilization. Secondly, we focused on the pharmaceutical potential of these emulsions for a topical application. Pharmaceutical active ingredients (API), used for the treatment of psoriasis, were successfully encapsulated in the NPs (cyclosporine A and tacrolimus) and the emulsion droplets (calcitriol). This study is a first step towards the use of these emulsions for the co-encapsulation of two API: one in the NPs and a second in the oil droplets. The co-encapsulation should improve patient compliance and could lead to a synergistic effect between the two API
Vectorisation de siRNA dirigés contre l'oncogène de fusion RET/PTC1 impliqué dans le carcinome papillaire de la thyroïde par des nanoparticules de squalène by Mouna Raouane( )

1 edition published in 2011 in French and held by 1 WorldCat member library worldwide

The papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy. This tumour is associated with somatic mutations of the RET proto-oncogene, due to gene rearrangements of the proto-RET. RET/PTC1 rearrangement is the most common genetic alteration identified to date, it is formed by an intra chromosomic rearrangement which leads to the juxtaposition of the RET Tyrosine Kinase domain of the proto-RET with the gene H4. The fusion RET/PTC1 oncogene represents an interesting target for small interfering RNA (siRNA) strategies since it is present only in the tumour cells and not in the surrounding normal cells. However, the biological efficacy of the siRNAs is hampered by their short plasma half-life due to poor stability in biological fluids and low intracellular penetration. In order to protect siRNA from degradation, and to improve their intracellular capture, we applied the concept of “squalenoylation”, ie. The bioconjugation of a drug substance to squalene, for the delivery of siRNA targeted toward the RET/PTC1 fusion oncogene. The acyclic isoprenoid chain of squalene was covalently coupled with RET/PTC1 siRNA at the 3'-terminus of the sense strand via a stable thioether linkage. The linkage of RET/PTC1 siRNA to squalene leads to an amphiphilic molecule that self-organise in water as RET/PTC1 siRNA-SQ nanoassemblies of 170 nm and Zeta potential of -26.4 mV. These RET/PTC1 siRNA-SQ NPs did not showed any cytotoxicity in vitro. Interestingly, in vivo, in a mouse xenografted RET/PTC1 experimental model, RET/PTC1 siRNA-SQ nanoparticles inhibited tumour growth, RET/PTC1 oncogene and oncoprotein expression, after intravenous injections of 2.5 mg/kg cumulative dose. In the last of this work, GALA-cholesterol combination with siRNA-SQ NPs further enhanced nucleic acid internalization, promoted their escape into the cytosol and consequently their gene silencing efficiency in vitro. In conclusion, these results showed that the “squalenoylation” offers a new non cationic plate-form for the siRNA delivery
Nouvelles approches ciblées pour le traitement des tumeurs de la famille du sarcome d'Ewing by Anne-Laure Ramon( )

1 edition published in 2012 in French and held by 1 WorldCat member library worldwide

This work has enabled a comprehensive evaluation of different sequences of siRNAs directed against EWS/Fli-1 in the treatment of tumors of the Ewing sarcoma family of tumors (ESFT). A siRNA was efficiently vectorized by polymeric nanoparticles targeted against a specific membrane marker of ESFT. These nanoparticles were characterized and appear to be well tolerated both in vitro and in vivo. Their evaluation was conducted on human cells and tumors which represents an interesting step forward in the fight against ESFT. The development of a fluorescent model of Ewing's sarcoma will better characterize their effect on metastasis, a key factor in patient survival. Finally, it was shown that in vivo imaging techniques allow to follow the fate of nanoparticles in vivo. That will allow understanding their biodistribution and their mode of action
Bicouches lipidiques modèles pour l'étude des interactions de substances exogènes avec les membranes biologiques : exemple d'un principe actif squalénisé, le ddC-SQ by Vanessa Allain( )

1 edition published in 2011 in French and held by 1 WorldCat member library worldwide

Drugs must cross one or more biological membranes (plasma membrane, intracellular membrane) to reach their intracellular target. Interactions between drug and membranes play a significant role in the pharmacokinetic properties of drug such as transport, distribution, accumulation. Moreover, drugs may alter membrane properties. The complexity of the composition (protein and lipid) and the structural properties (heterogeneity) of membranes leads to a difficult investigation of these interactions. Consequently, use of simplified model membranes is needed. In this work, model lipid bilayer systems in which the lipid organization mimics the arrangement of lipids in natural membrane have been developed. In this way, the complexity of lipid composition mixtures has been progressively increased. The primary function of membrane is to physically separate aqueous compartments from their surroundings. The intracellular and extracellular fluids differ in ionic composition. This study firstly consists to estimate the influence of aqueous medium nature on the thermodynamic and structural properties of these model membranes.In physiological conditions (pH 7.4, ionic strength 150 mM), the most significant change was obtained in the presence of divalent ions. Markedly change in lipid organization was observed and the formation of unilamellar vesicles has been evidenced (at low concentrations) in simple model bilayers. Interactions of an antiretroviral nucleoside analogue, the SQddC, with lipid systems constitute the second part of our work. Squalene has been covalently coupled to ddC, in order to improve its therapeutic index. Squalenoylation leads to amphiphilic prodrugs which self-organize as nanoparticles. ddC weakly interacts with lipid membranes while SQddC-SQ can insert into membranes between hydrophobic alkyl chains and induce disruption of lipid organization. Consequently, the efficacy and/or toxicity of this drug could change
Développement d'une méthode de préconcentration de phosphopeptides sur phase monolithique en puce by Ichraf Ayed( )

1 edition published in 2012 in French and held by 1 WorldCat member library worldwide

Protein phosphorylation is a key regulator of cellular signaling pathways. It is involved in most cellular events and strictly controls biological processes such as proliferation, differentiation and gene expression. An abnormal phosphorylation can be observed in various diseases such as some cancers or neurodegenerative diseases. Therefore, these proteins are potential biomarkers for the development of diagnostic tools. However, phosphoproteins can be present at low abundance in biological samples and selective enrichment techniques have to be developed prior to the analysis process. One of the most common approaches is based on Immobilized metal affinity chromatography (IMAC). The goal of this work was to develop a microsystem which contains a porous polymer monolith (PPM) as a solid phase extraction for a selective preconcentration of phosphopeptides by IMAC. UV-polymerization and characterization (permeability, porosity and specific area) of a monolith based on ethylene glycol methacrylate phosphate in silica capillaries was first performed. Then, we tried to optimize the different IMAC steps (metal immobilization, sample loading, washing and elution). An efficient immobilization of zirconium on the phosphated PPM was demonstrated by EOF measurements in capillary and confirmed by retention of a model phosphopetide. We demonstrated that the phosphated monolith was also a strong cation exchanger of highly basic peptides. Protocols of loading and elution were also studied but need to be further optimized. Transposition of phosphopeptides enrichment by IMAC on a miniaturized system was then considered. We selected two microchip materials: PDMS is an attractive polymer for its low cost, its ease of microfabrication, its excellent working properties (biocompatibility, UV transparent with low autofluorescence) and many integration possibilities (enrichment, separation and detection) and glass microchip more common and having a good UV transparency. However, PDMS presents two major disadvantages: high absorption property, and oxygen permeability which quench free radical polymerization. Except a few attempts, this material has not been employed successfully as mould for monolith polymerization. To overcome these problems, we investigated several strategies for PDMS surface treatments such as plasma treatment and borosilicate coating. Finally, we demonstrated that our IMAC module performed well on glass microchip. This miniaturized module should be integrated in the future into a microsystem dedicated to the diagnosis of Alzheimer disease
Prodrogues Polymères Dégradables par Polymérisation Radicalaire par Ouverture de Cycle Contrôlée par les Nitroxydes by Elise Guegain( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

Nitroxide-mediated radical ring-opening copolymerization of methacrylic esters and cyclic ketene acetals was investigated and enabled the synthesis of well-defined degradable vinyl copolymers containing ester groups along the main chain, whose amount was readily adjusted by changing the initial comonomer feed. More specifically, the copolymerizations of 2-methylene-4-phenyl-1,3-dioxolane (MPDL) and either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA) were initiated by an alkoxyamine initiator based on the SG1 nitroxide. It led to a library of P(OEGMA-co-MPDL) and P(MMA-co-MPDL) materials that were hydrolytically degraded under both accelerated and physiological conditions. Their hydrolytic degradation kinetics were also benchmarked against traditional polyesters (e.g., PLGA, PLA and PCL) where P(OEGMA-co-MPDL) copolymers showed tunable degradation rates as function of the MPDL content, being in between those of PLA and PCL. Conversely, the more hydrophobic P(MMA-co-MPDL) copolymers exhibited much slower hydrolysis than that of PCL. In a second step, a new class of degradable polymer prodrugs was developed by nitroxide-mediated radical ring-opening copolymerization of MPDL with OEGMA or MMA, from a drug-bearing initiator ('drug-initiated' method). To do so, Gemcitabine, an anticancer drug, was derivatized with a SG1-based alkoxyamine to initiate the copolymerization reaction. The resulting degradable polymer prodrugs exhibited interesting characteristics in terms of drug release and in vitro cytotoxicity, depending on the nature of the methacrylic ester used, the nature of the linker between the drug and the polymer and the MPDL content. This study enabled us to extract important structure-activity relationships of great importance for further development
Synthesis and biochemical study on the effect of a novel gallium complex on tumor cell Invasion and matrix metalloproteinase activity in vitro. by Ahmed Mohamed( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

Two water soluble gallium complexes with formula [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives were synthesized and characterized by 1H NMR, 13C NMR, FT-IR, mass spectrometry and elemental analysis. The analytical data are consistent with a mononuclear structure in which the gallium (III) cation is liganded by one of the two carboxylic acid groups, the phenol oxygen and the nitrogen atom of the 2-hydroxybenzylamino group. In such a structure, the tridendate ligand secures the binding of the metal ion whereas the carboxylic appendage provides the water solubility. The cytotoxicity of the gallium complex of (R)-2-(5-chloro-2-hydroxybenzylamino) succinic acid (GS2) was evaluated against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines. The 5-chloro derivative GS2 was found to be more cytotoxic than the unsubstituted derivative and GaCl3. GS2 induces apoptosis through down-regulation of AKT phosphorylation, G2M arrest in cell cycle via activation of the caspase3/7 pathway. Although, many molecular and cell effects of Ga have been described, including proteasome inhibition and osteoclastic activities, GS2 appears as the first Ga compounds able to decrease AKT phosphorylation in cancer cells. The activity of GS2 on cell invasion and on the expression and activity of Matrix Metalloproteinases (MMPs) have been investigated using modified Boyden chamber coated with type I collagen. We analyzed the activity on MMPs by zymography and enzymatic assay using high affinity fluorogenic substrates. A selective inhibition of MMP-14 has been reported to blocks tumor cell migration and invasion. The expression of MMPs mRNA was analyzed by qRT-PCR. GS2 induces a decrease in cell invasion. A dose dependent inhibition effect was observed on MMP-2, MMP-9 and MMP-14 activities. A decrease in MMP-14 mRNA expression was observed in both cell lines, whereas MMP-2 and MMP-9 mRNA expression was decreased only in MDA-MB231 cells. Thus, we propose that GS2 compound may be a potential candidate to decrease the MMP-14 activity in cancer metastatic diseases presenting high level of MMP-14 expression and activity. Taken together, these data show that GS2, in combination with cytotoxic chemotherapy a is a promising compound for anti-invasive and anticancer therapy
Polymeric nanoparticles as original theranostic approach for alzheimer"s disease by Davide Brambilla( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

Gels d'acide hyaluronique contenant des liposomes pour la libération prolongée d'un corticoïde dans l'oreille interne by Naila El kechai( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

Local, rather than systemic drug delivery is being developed to treat inner ear diseases. In this work, we developed an original drug delivery system based on liposomes dispersed within a hyaluronic acid gel for the sustained delivery of a corticoid to the inner ear after local administration in the middle ear. First, a thorough physicochemical study allowed to identify the key formulation parameters that impact the liposomal gel properties in terms of rheological behavior, syringeability, stability, microstructure and diffusion of liposomes within the gel. Then, the liposomal gel containing dexamethsone phosphate was evaluated in vivo in guinea pig. The local administration of the liposomal gel in the middle ear resulted in a sustained release of the corticoid in the inner ear without any negative effect on the hearing function. Promising preliminary data were obtained regarding the therapeutic efficacy of the formulation for hearing recovery after acoustic trauma and for hearing preservation during cochlear implantation
Fonctionnalisation de liposomes par des aptamères pour le ciblage actif des cellules cancéreuses by Walhan Alshaer( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

In this work we succeeded to select a modified RNA aptamer, named Apt1, to bind the human CD44 receptor protein with high affinity using the Systemaic Evolution of Ligands by EXponential enrichment (SELEX) method. The selected aptamer was modified with 2'-F-pyrimidines to increase its stability against nucleases for therapeutic applications. Furthermore, we designed and characterized aptamer-functionalized liposomes loaded with siRNA molecules against a reporter gene as a model drug delivery system for the active targeting CD44-expressing tumor cells in vitro and in vivo. Such functionalization was performed by conjugation of 3'-thiol-modified Apt1 to maleimide-modified phospholipids, either on the surface of liposomes, or separately, followed by post-insertion onto liposomes. The targeted liposomes displayed high affinity for CD44-positive cells without triggering any inflammatory response within these cells. Moreover, we show that a higher and prolonged inhibition of the targeted gene can be achieved when siRNA-loaded liposomes are functionalized by the aptamer, both in vitro and in vivo on a murine orthotopic breast cancer model. Such a delivery system may thus be a useful tool for the active targeting of CD44-expressing tumors and silencing oncogenes in vivo
Nanoémulsions d'intérêt pharmaceutique stabilisées par la beta-lactoglobuline by Ali Âli( )

1 edition published in 2016 in French and held by 1 WorldCat member library worldwide

Les nanoémulsions (NEs) huile/eau peuvent être utilisées en tant que systèmes de délivrance des médicaments pour l'encapsulation des substances actives hydrophobes afin d'améliorer leur stabilité et leur biodisponibilité. Néanmoins, leur stabilisation nécessite l'utilisation de concentrations plus importantes de tensioactifs par rapport aux émulsions conventionnelles en raison de l'augmentation de la surface spécifique. La plupart des tensioactifs synthétiques couramment utilisés dans la formulation des émulsions sont potentiellement irritants, voire toxiques. Cela entrave l'application thérapeutique des NEs en particulier pour les traitements à long terme. L'objectif de cette thèse est alors de formuler des NEs pharmaceutiques huile/eau stabilisées par un biopolymère, la beta-lactoglobuline (beta-lg), à la place des tensioactifs synthétiques.Les NEs ont été préparées par homogénéisation à haute pression (HHP). La composition de la formulation et les conditions du procédé ont été optimisées afin d'obtenir des gouttelettes nanométriques dans des NEs stables. Les résultats ont montré que les NEs les plus stables, avec une taille de gouttelettes < 200 nm, ont été obtenues quand 5 m/m% de l'huile ayant la viscosité la plus faible ont été utilisés en tant que phase huileuse, 95 m/m% de la solution de beta-lg à une concentration de 1 m/m% ont été utilisés en tant que phase aqueuse et 4 cycles d'HPH de 100 MPa ont été appliqués. Cette formulation a été stable contre les phénomènes de croissance de gouttelettes pendant au moins 30 jours grâce à un film interfacial quasiment purement élastique. La gomme xanthane, un polysaccaride naturel, a été ajoutée à la formulation optimale à une concentration de 0,5 m/m% en tant qu'agent épaississant. Cela a permis d'obtenir une texture crémeuse avec un comportement rhéofluidifiant. Dans cette dernière formulation, la vitesse de migration des gouttelettes a été considérablement réduite et la stabilité des NEs a été améliorée.Les effets du procédé d'HPH sur les différents niveaux de structure de la protéine ont été évalués à l'aide de méthodes spectroscopiques, chromatographiques et électrophorétiques. L'influence de ce traitement sur ses propriétés interfaciales et émulsionnantes a également été étudiée. L'efficacité émulsionnante optimale a été obtenue quand les conditions d'HPH n'ont pas altéré la structure de la beta-lg, ni ses propriétés interfaciales. Néanmoins, un traitement d'HHP excessif (300 MPa/5 cycles) a induit des modifications structurelles, principalement une transformation des feuillets beta en structures désordonnées, une large perte dans le cœur hydrophobe, et une agrégation importante par des liaisons disulfure intermoléculaires. La beta-lg modifiée par l'HHP a montré une hydrophobie de surface plus importante conduisant à une vitesse d'adsorption à l'interface huile/eau plus élevée et une formation plus précoce d'un film interfacial. La dénaturation de la protéine par ce traitement à haute pression, qui a été effectuée avant le processus d'émulsification, n'a pas modifié de façon significative l'efficacité émulsionnante. La réduction de l'efficacité a été probablement plutôt induite par la dénaturation simultanée avec l'émulsification sous conditions d'écoulement très turbulent.L'intérêt de la formulation développée en tant que véhicule pour un modèle de substance active hydrophobe a été étudié avec l'isotrétinoïne (IT), usuellement utilisé pour le traitement de l'acné sévère. La formulation développée a permis d'encapsuler 0,033 m/m% d'IT sans aucune modification de la stabilité du système. Environ 10 % de l'IT ajoutée ont été solubilisés dans la phase aqueuse en association avec la protéine libre en excès. L'IT encapsulée dans les gouttelettes huileuses a été plus stable contre la photo-isomérisation que celle associée à la protéine libre. La formulation développée apparait prometteuse en tant que système de délivrance de l'IT pour une application cutanée
Nanoparticules multifonctionnelles de PBLG destinées au ciblage et à la délivrance d'anticancéreux aux tissus osseux by Laura de Miguel Martínez de Aragón( )

1 edition published in 2013 in English and held by 1 WorldCat member library worldwide

Multifunctional bone targeted polymeric nanoparticles prepared by self-assembly of several poly(gamma-benzyl-L-glutamate) (PBLG) derivates have been developed. Their bone binding properties were provided by two different osteotropic moieties, alendronate or/and poly(glutamic acid) exposed on the nanoparticle surface. Their affinity for bone tissues has been evaluated in vitro, ex vivo and in vivo, including their detailed distribution in bone tissues structures. Further, in view of bone cancer therapeutics, nanoparticles were provided with anticancer properties thanks to the complexation of cisplatin, which leaded to very well controlled release properties. Finally, cytotoxicity were studied. Therefore, this strategy constitute a promising approach for the improvement of bone cancer therapeutics
Conception et évaluation d'un vecteur ciblé de thérapie génique anticancéreuse destiné à la voie intraveineuse by Amélie Dufaÿ( )

1 edition published in 2012 in French and held by 1 WorldCat member library worldwide

Support immunologique pour biocapteur : caractérisations physico-chimiques et biologiques by Thi Phuong Ly Giang( )

1 edition published in 2013 in French and held by 1 WorldCat member library worldwide

The aim of my PhD thesis, conducted as part of a collaboration between the laboratory of protein separation sciences and nanotechnology (Paris-Sud Galen Institute) and the Micro and Nano System (basic electronics institute) group was to study the influence of self-assembled monolayers on the biological activity of bioreceptor toward biosensor development. In this project, we choose the organosilanes that can bind covalently to the silicon. Two silanes (7-octenyl trichlorosilane(OTS) and 3- aminopropyltriethoxysilane (APTES)) were studied., Their impact on the stability and the functionality of bio- receptor , model mouse immunoglobulin G (IgG), were evaluated. Spectroscopic characterization by XPS and infra- red Fourier transformed (FTIR) was first carried out to assess that the silanized surface exhibit carboxylic groups. The homogeneity of the surfaces was measured by AFM. Then, IgG were immobilized on these supports, covalently and a topographic AFM study was conducted to measure the distribution of these antibodies. The orientation of the grafted antibody was investigated by immune-enzymatic assays. We have also evaluated the binding capacity of the IgG immobilized on both surfaces. Then, the impact of aging on APTES surface was evaluated by spectroscopics and biological methods
Conception, préparation & caractérisation de nanoparticules de formes complexes : Etude de leur devenir in vivo by Olivier Cauchois( )

1 edition published in 2011 in English and held by 1 WorldCat member library worldwide

The drug targeting strategy aims not only to reduce the amount of administered drugs, but also to improve the benefit/risk ratio for the patient. Specific cellular delivery is raised while toxic effects caused by non specific delivery are weakened.To be fully efficient various vectors have been proposed, which are not only able to encapsulate the therapeutic molecules, but are also meant to interact efficiently with target cells. From this point of view, polymer nanoparticles are interesting objects for specifically targeting cells because of a unique combination of a nanometric size and the possibility to considerably modulate their physico-chemical properties.To this day the influence of the morphology of micro- and nanoparticles on their biodistribution is mostly unknown. However only a few studies suggest that the shapeof objects introduced in the body has a major influence on their fate in fluids[1], in vitro [2], and in vivo. Thus the observation of micro-organisms shows that shape not only influences their displacement, but also their capacity to interact with cells and the capture by macrophages.Understanding, at the micro- and nanometric levels the influence of shape on the interaction between particles and cells presents an undeniable scientific andpharmaceutical interest. Within this framework, the objective of our project is toidentify the different mechanisms or phenomena that the shape might impact, and to try to quantify their significance. More and more studies on the fabrication of micro and nanoparticles are emerging, but almost no data referred to the influence of shape on the behavior of these objects.To realize this study, we focused on producing non spherical particles of controlledshape and surface, either by auto-assembly of copolymers of poly(gamma-benzyl-Lglutamate)or by deformation of spherical nanoparticles. Then we studied the influence of shape on the in vitro interactions with characterized surfaces throughsurface plasmon resonance, on the interactions with cells (Human umbilical veinendothelial cells, HUVEC), and on the in vivo fate of the particles. All these elements demonstrated that the morphology of micro- and nanoparticles must be considered as a major factor to modulate their in vivo fate
Photosensibilisateurs pour la thérapie photodynamique (PDT) des cancers : impact des modifications structurales sur leur interaction avec des membranes by Donia Essaid( )

1 edition published in 2016 in French and held by 1 WorldCat member library worldwide

Photodynamic therapy (PDT) is atreatment modality in which a photosensitizer(PSr) is injected to a patient. Then the tumor isilluminated with a laser. The excited PSrinduces the production of cytoxic singletoxygen. Our collaborators at the Institut Curiehave synthesized glycoconjugated tetraphenylporphyrins(TPP) for the treatment ofretinoblastoma by PDT. These compoundswere characterized in vitro and studies showedthat the most promising porphyrin crossed thecell membrane by passive transport. It is in thiscontext that this research was developed: theobjective was to study the interaction of aseries of porphyrins with membrane lipids.Firstly, porphyrin interaction with lipids wasstudied by a chromatographic approach onC18/C8, PolarTec, HILIC and IAM columns.Results showed a variation in the interactionaccording to porphyrin structures.Then, we demonstrated the effect of two TPPson phospholipid bilayers organization by DSC,and determined the localization of thisinteraction (polar heads or lipid aliphaticchains) by FTIR-ATR. The effect of TPPs onlipids and proteins was studied at the cellularlevel by IR microspectroscopy coupled withsynchrotron radiation. A discrimination ofporphyrins could be made by chemometrictools for Y79 cells but not for WERI-Rb1 norARPE-19 ones. In order to develop an artificialmembrane model, we performed lipidomicanalysis by mass spectrometry (Orbitrap) ofplasma and mitochondrial lipid membranes ofY79 and ARPE-19 cells. We determined theviscoelastic properties of lipid extracts andproposed an artificial lipid model partiallymimicking these viscoelastic properties. Thismodel could allow TPP screening in vitro
Nanoformulations pour la protection de flavonoïdes instables : exemple de la quercétine by Tri Truong Công( )

1 edition published in 2012 in French and held by 1 WorldCat member library worldwide

This thesis focuses on the development of polyoxylglycérides-based lipid nanoparticles to protect labile APIs, quercetin (a fragile antioxidant flavonoid) in this case. Different nanoparticulate systems were prepared by high pressure homogenization with particle size between 100 to 200 nm. These nanodispersions are very stable over several years at room temperature. Encapsulation of quercetin in compartmented lipid nanoparticles and preparation of nanocrystals have increased significantly its content in the dispersion and effectively improve its physical and chemical stability
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.00 (from 0.00 for Toxicologi ... to 0.00 for Toxicologi ...)

Alternative Names
IGPS (Châtenay-Malabry, Hauts-de-Seine)

Institut Galien Paris-Sud

Laboratoire de Physicochimie, Pharmacotechnie, Biopharmacie

Physico-Chimie, Pharmacotechnie, Biopharmacie

UMR 8612

UMR8612

Unité mixte de recherche 8612

Languages
French (12)

English (8)