Manchon, Dominique
Overview
Works:  27 works in 43 publications in 2 languages and 242 library holdings 

Roles:  Other, Editor, Author, Instrumentalist, 958, Thesis advisor, Opponent, Publisher 
Publication Timeline
.
Most widely held works by
Dominique Manchon
Resurgence, physics and numbers by Physics and Numbers Conference Resurgence(
)
10 editions published in 2017 in English and held by 215 WorldCat member libraries worldwide
This book is issued from a conference around resurgent functions in Physics and multiple zetavalues, which was held at the Centro di Ricerca Matematica Ennio de Giorgi in Pisa, on May 1822, 2015. This meeting originally stemmed from the impressive upsurge of interest for Jean Ecalle's alien calculus in Physics, in the last years  a trend that has considerably developed since then. The volume contains both original research papers and surveys, by leading experts in the field, reflecting the themes that were tackled at this event: Stokes phenomenon and resurgence, in various mathematical and physical contexts but also related constructions in algebraic combinatorics and results concerning numbers, specifically multiple zetavalues. .
10 editions published in 2017 in English and held by 215 WorldCat member libraries worldwide
This book is issued from a conference around resurgent functions in Physics and multiple zetavalues, which was held at the Centro di Ricerca Matematica Ennio de Giorgi in Pisa, on May 1822, 2015. This meeting originally stemmed from the impressive upsurge of interest for Jean Ecalle's alien calculus in Physics, in the last years  a trend that has considerably developed since then. The volume contains both original research papers and surveys, by leading experts in the field, reflecting the themes that were tackled at this event: Stokes phenomenon and resurgence, in various mathematical and physical contexts but also related constructions in algebraic combinatorics and results concerning numbers, specifically multiple zetavalues. .
FORMULE DE WEYL POUR LES GROUPES DE LIE NILPOTENTS by
DOMINIQUE MANCHON(
Book
)
2 editions published in 1989 in French and held by 4 WorldCat member libraries worldwide
POUR TOUT GROUPE DE LIE G REEL NILPOTENT SIMPLEMENT CONNEXE ON DEFINIT LES CLASSES DE SYMBOLES SUR LE DUAL DE SON ALGEBRE DE LIE; POUR TOUTE REPRESENTATION UNITAIRE IRREDUCTIBLE DE G ET POUR TOUT SYMBOLE P ON DEFINIT L'OPERATEUR DE SYMBOLE DE WEYL P, AGISSANT SUR L'ESPACE DE LA REPRESENTATION. ON ETABLIT ALORS UNE FORMULE DONNANT LE COMPORTEMENT ASYMPTOTIQUE DES VALEURS PROPRES DE L'OPERATEUR EN FONCTION DES VALEURS PRISES PAR SON SYMBOLE DE WEYL SUR L'ORBITE COADJOINTE ASSOCIEE A LA REPRESENTATION PAR LA METHODE DE KIRILLOV, DANS LE CAS OU LE SYMBOLE EST ELLIPTIQUE DANS LA DIRECTION DU CONE ASYMPTOTE A L'ORBITE
2 editions published in 1989 in French and held by 4 WorldCat member libraries worldwide
POUR TOUT GROUPE DE LIE G REEL NILPOTENT SIMPLEMENT CONNEXE ON DEFINIT LES CLASSES DE SYMBOLES SUR LE DUAL DE SON ALGEBRE DE LIE; POUR TOUTE REPRESENTATION UNITAIRE IRREDUCTIBLE DE G ET POUR TOUT SYMBOLE P ON DEFINIT L'OPERATEUR DE SYMBOLE DE WEYL P, AGISSANT SUR L'ESPACE DE LA REPRESENTATION. ON ETABLIT ALORS UNE FORMULE DONNANT LE COMPORTEMENT ASYMPTOTIQUE DES VALEURS PROPRES DE L'OPERATEUR EN FONCTION DES VALEURS PRISES PAR SON SYMBOLE DE WEYL SUR L'ORBITE COADJOINTE ASSOCIEE A LA REPRESENTATION PAR LA METHODE DE KIRILLOV, DANS LE CAS OU LE SYMBOLE EST ELLIPTIQUE DANS LA DIRECTION DU CONE ASYMPTOTE A L'ORBITE
Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie by
Dominique Manchon(
Book
)
2 editions published in 1993 in Undetermined and French and held by 3 WorldCat member libraries worldwide
2 editions published in 1993 in Undetermined and French and held by 3 WorldCat member libraries worldwide
From Stokes' formula to cyclic Hochschild cocycles on classical symbols by Yoshiaki Maeda(
Book
)
2 editions published in 2004 in English and held by 3 WorldCat member libraries worldwide
2 editions published in 2004 in English and held by 3 WorldCat member libraries worldwide
Combinatoire algébrique des permutations et de leurs généralisations by
Vincent Vong(
)
1 edition published in 2014 in French and held by 2 WorldCat member libraries worldwide
Cette thèse se situe au carrefour de la combinatoire et de l'algèbre. Elle se consacre d'une part à traduire des problèmes algébriques en des problèmes combinatoires, et inversement, utilise le formalisme algébrique pour traiter des questions combinatoires. Après un rappel des notions classiques de combinatoire et d'algèbres de Hopfavec quelques applications, nous abordons l'étude de certaines statistiques définies sur les permutations : les pics, les vallées, les doubles montées et les doubles descentes, qui sont à la base de la bijection de FrançonViennot, ellemême débouchant sur une étude combinatoire des polynômes orthogonaux. Nous montrons qu'à partir de ces statistiques, il est possible de construire diverses sousalgèbres ou algèbres quotients de FQSym, une algèbre dont une base est indexée par les permutations. Puis, nous étudions deux suites classiques de combinatoire par une démarche non commutative : les polynômes de Gandhi, un raffinement polynomial des nombres de Genocchi, et les nombres d'Euler, une suite recelant de nombreuses propriétés combinatoires. Nous nous attachons à montrer que l'approche non commutative permet, dans la majeure partie des cas, d'obtenir de manière directe des interprétations d'identités combinatoires. Enfin, inversement, certaines questions de nature algébrique peuvent être abordées d'un point de vue combinatoire. Ainsi, à travers l'étude des algèbres dendriformes, des algèbres tridendriformes, et des quadrialgèbres, nous prouvons des questions de liberté à propos de ces algèbres grâce à la combinatoire des arbres étiquetés
1 edition published in 2014 in French and held by 2 WorldCat member libraries worldwide
Cette thèse se situe au carrefour de la combinatoire et de l'algèbre. Elle se consacre d'une part à traduire des problèmes algébriques en des problèmes combinatoires, et inversement, utilise le formalisme algébrique pour traiter des questions combinatoires. Après un rappel des notions classiques de combinatoire et d'algèbres de Hopfavec quelques applications, nous abordons l'étude de certaines statistiques définies sur les permutations : les pics, les vallées, les doubles montées et les doubles descentes, qui sont à la base de la bijection de FrançonViennot, ellemême débouchant sur une étude combinatoire des polynômes orthogonaux. Nous montrons qu'à partir de ces statistiques, il est possible de construire diverses sousalgèbres ou algèbres quotients de FQSym, une algèbre dont une base est indexée par les permutations. Puis, nous étudions deux suites classiques de combinatoire par une démarche non commutative : les polynômes de Gandhi, un raffinement polynomial des nombres de Genocchi, et les nombres d'Euler, une suite recelant de nombreuses propriétés combinatoires. Nous nous attachons à montrer que l'approche non commutative permet, dans la majeure partie des cas, d'obtenir de manière directe des interprétations d'identités combinatoires. Enfin, inversement, certaines questions de nature algébrique peuvent être abordées d'un point de vue combinatoire. Ainsi, à travers l'étude des algèbres dendriformes, des algèbres tridendriformes, et des quadrialgèbres, nous prouvons des questions de liberté à propos de ces algèbres grâce à la combinatoire des arbres étiquetés
A Madre de Deus by
Alphonse(
Recording
)
in Undetermined and held by 2 WorldCat member libraries worldwide
in Undetermined and held by 2 WorldCat member libraries worldwide
Algèbres de Hopf combinatoires by Rémi Maurice(
)
1 edition published in 2013 in French and held by 2 WorldCat member libraries worldwide
This thesis is in the field of algebraic combinatorics. In other words, the idea is to use algebraic structures, in this case of combinatorial Hopf algebras, to better study and understand the combinatorial objects and algorithms for composition and decomposition about these objects. This research is based on the construction and study of algebraic structure of combinatorial objects generalizing permutations. After recalling the background and notations of various objects involved in this research, we propose, in the second part, the study of the Hopf algebra introduced by Aguiar and Orellana based on uniform block permutations. By focusing on a description of these objects via wellknown objects, permutations and set partitions, we propose a polynomial realization and an easier study of this algebra. The third section considers a second generalization interpreting permutations as matrices. We define and then study the families of square matrices on which we define algorithms for composition and decomposition. The fourth part deals with alternating sign matrices. Having defined the Hopf algebra of these matrices, we study the statistics and the behavior of the algebraic structure with these statistics. All these chapters rely heavily on computer exploration, and is the subject of an implementation using Sage software. This last chapter is dedicated to the discovery and manipulation of algebraic structures on Sage. We conclude by explaining the improvements to the study of algebraic structure through the Sage software
1 edition published in 2013 in French and held by 2 WorldCat member libraries worldwide
This thesis is in the field of algebraic combinatorics. In other words, the idea is to use algebraic structures, in this case of combinatorial Hopf algebras, to better study and understand the combinatorial objects and algorithms for composition and decomposition about these objects. This research is based on the construction and study of algebraic structure of combinatorial objects generalizing permutations. After recalling the background and notations of various objects involved in this research, we propose, in the second part, the study of the Hopf algebra introduced by Aguiar and Orellana based on uniform block permutations. By focusing on a description of these objects via wellknown objects, permutations and set partitions, we propose a polynomial realization and an easier study of this algebra. The third section considers a second generalization interpreting permutations as matrices. We define and then study the families of square matrices on which we define algorithms for composition and decomposition. The fourth part deals with alternating sign matrices. Having defined the Hopf algebra of these matrices, we study the statistics and the behavior of the algebraic structure with these statistics. All these chapters rely heavily on computer exploration, and is the subject of an implementation using Sage software. This last chapter is dedicated to the discovery and manipulation of algebraic structures on Sage. We conclude by explaining the improvements to the study of algebraic structure through the Sage software
La remontée du chantier(
Recording
)
in Undetermined and held by 2 WorldCat member libraries worldwide
in Undetermined and held by 2 WorldCat member libraries worldwide
Weyl symbol calculus on solvable Lie groups by
D Manchon(
Book
)
2 editions published in 1992 in Undetermined and English and held by 2 WorldCat member libraries worldwide
2 editions published in 1992 in Undetermined and English and held by 2 WorldCat member libraries worldwide
Birkhoff type decompositions and the BakerCampbellHausdorff recursion by
Kurusch EbrahimiFard(
Book
)
1 edition published in 2006 in English and held by 1 WorldCat member library worldwide
1 edition published in 2006 in English and held by 1 WorldCat member library worldwide
En Tornar musique d'Auvergne by
Dominique Manchon(
Recording
)
1 edition published in 2012 in French and held by 1 WorldCat member library worldwide
1 edition published in 2012 in French and held by 1 WorldCat member library worldwide
Weyl symbolic calculus on solvable Lie groups by
Dominique Manchon(
Book
)
1 edition published in 1992 in Undetermined and held by 1 WorldCat member library worldwide
1 edition published in 1992 in Undetermined and held by 1 WorldCat member library worldwide
Birkhoff type decompositions and the BakerCampbellHausdorff recursion(
)
1 edition published in 2006 in English and held by 1 WorldCat member library worldwide
1 edition published in 2006 in English and held by 1 WorldCat member library worldwide
Opérateurs FourierIntégraux sur des espaces de représentations, formule asymptotique de Weyl by
Bérenger Aubin(
)
1 edition published in 2010 in French and held by 1 WorldCat member library worldwide
Soit A un opérateur pseudodifférentiel elliptique autoadjoint d'ordre 1 invariant à gauche sur un groupe de Lie G. Mon travail a consisté à approximer de eitA par un OFI invariant à gauche. Puis, j'ai étudié les représentations unitaires irréductibles et la méthode des orbites de Kirillov. Enfin, j'ai fait la démonstration d'une formule asymptotique de Weyl pour pi(a) ou a est un élément formellement positif elliptique de U(g)
1 edition published in 2010 in French and held by 1 WorldCat member library worldwide
Soit A un opérateur pseudodifférentiel elliptique autoadjoint d'ordre 1 invariant à gauche sur un groupe de Lie G. Mon travail a consisté à approximer de eitA par un OFI invariant à gauche. Puis, j'ai étudié les représentations unitaires irréductibles et la méthode des orbites de Kirillov. Enfin, j'ai fait la démonstration d'une formule asymptotique de Weyl pour pi(a) ou a est un élément formellement positif elliptique de U(g)
Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative by
Franck GautierBaudhuit(
)
1 edition published in 2017 in French and held by 1 WorldCat member library worldwide
The thesis is about a families of zeta functions (Dirichlet series) that may be associated to certain algebras of Hilbert space operators. In this thesis, the main question in studying these zeta functions is to establish their meromorphic continuation from a halfplane in the complex plane to the full plane.Following an idea of Nigel Higson, we develop, in part I, a method for proving the existence of a meromorphic continuation for some spectral zeta functions. The method is based on algebras of generalized differential operators. The more important tool is the reduction sequence. The main theorem states, under some conditions, the existence of a meromorphic continuation, a localization of the poles in supports of arithmetic sequences and an upper bound of their order. A formulation of the method into the framework of Connes and Moscovici, the regular spectral triples, setting in part II. In the third part, we give an application for zeta functions associate to a Laplacetype operator on a smooth, closed manifold. This example was initially treated in this way by Nigel Higson in 2006. We give another application for zeta functions associate to the noncommutative torus. In part IV, using the work of Dominique Manchon on algebras of pseudodifferential operators associated to unitary representations of nilpotent Lie group, we construct new spectral triples. In part V, set the main application of the method. We applicate the reduction method for some algebras of generalized differential operators, arising from a Kirillov representation of a class of nilpotent Lie algebras
1 edition published in 2017 in French and held by 1 WorldCat member library worldwide
The thesis is about a families of zeta functions (Dirichlet series) that may be associated to certain algebras of Hilbert space operators. In this thesis, the main question in studying these zeta functions is to establish their meromorphic continuation from a halfplane in the complex plane to the full plane.Following an idea of Nigel Higson, we develop, in part I, a method for proving the existence of a meromorphic continuation for some spectral zeta functions. The method is based on algebras of generalized differential operators. The more important tool is the reduction sequence. The main theorem states, under some conditions, the existence of a meromorphic continuation, a localization of the poles in supports of arithmetic sequences and an upper bound of their order. A formulation of the method into the framework of Connes and Moscovici, the regular spectral triples, setting in part II. In the third part, we give an application for zeta functions associate to a Laplacetype operator on a smooth, closed manifold. This example was initially treated in this way by Nigel Higson in 2006. We give another application for zeta functions associate to the noncommutative torus. In part IV, using the work of Dominique Manchon on algebras of pseudodifferential operators associated to unitary representations of nilpotent Lie group, we construct new spectral triples. In part V, set the main application of the method. We applicate the reduction method for some algebras of generalized differential operators, arising from a Kirillov representation of a class of nilpotent Lie algebras
Renormalisation dans les algèbres de HOPF graduées connexes by
Mohamed Belhaj Mohamed(
)
1 edition published in 2014 in French and held by 1 WorldCat member library worldwide
In this thesis, we study the renormalization of ConnesKreimer in the contex of specified Feynman graphs Hopf algebra. We construct a Hopf algebra structure $\mathcal{H}_\mathcal{T}$ on the space of specified Feynman graphs of a quantum field theory $\mathcal{T}$. We define also a doubling procedure for the bialgebra of specified Feynman graphs, a convolution product and a group of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.We recall the definition of Feynman integrals associated with a graph. We prove that these integrals are holomorphic in a complex variable D in the case oh Schwartz functions, and that they extend in a meromorphic functions in the case of a Feynman type functions. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure
1 edition published in 2014 in French and held by 1 WorldCat member library worldwide
In this thesis, we study the renormalization of ConnesKreimer in the contex of specified Feynman graphs Hopf algebra. We construct a Hopf algebra structure $\mathcal{H}_\mathcal{T}$ on the space of specified Feynman graphs of a quantum field theory $\mathcal{T}$. We define also a doubling procedure for the bialgebra of specified Feynman graphs, a convolution product and a group of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.We recall the definition of Feynman integrals associated with a graph. We prove that these integrals are holomorphic in a complex variable D in the case oh Schwartz functions, and that they extend in a meromorphic functions in the case of a Feynman type functions. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure
Shuffle relations for regularised integrals of symbols(
)
1 edition published in 2006 in English and held by 1 WorldCat member library worldwide
1 edition published in 2006 in English and held by 1 WorldCat member library worldwide
more
fewer
Audience Level
0 

1  
Kids  General  Special 
Related Identities
 Marmi, Stefano Other Editor
 Sauzin, David Other Editor
 Fauvet, F. (Frédéric) Other Editor
 Paycha, Sylvie
 Novelli, JeanChristophe Opponent Thesis advisor
 Pollier, Marc Instrumentalist
 Laboratoire d'informatique de l'Institut Gaspard Monge
 Université ParisEst (20072015) Degree grantor
 Patras, Frédéric (1967....). Opponent Thesis advisor
 École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (ChampssurMarne, SeineetMarne / 20102015)
Associated Subjects