WorldCat Identities

Winkelmann, Clemens (1976-....).

Overview
Works: 13 works in 14 publications in 2 languages and 21 library holdings
Roles: Opponent, Thesis advisor, Author
Publication Timeline
.
Most widely held works by Clemens Winkelmann
Systèmes nanoélectroniques hybrides : cartographies de la densité d'états locale by Sylvain Martin( )

1 edition published in 2012 in French and held by 2 WorldCat member libraries worldwide

Mesoscopic physic is currently dominated by transport measurements that extract overall electronic properties of the studied sytstems. Tunneling spectroscopy gives access to the local density of states (LDOS). Hence, we can probe the spatial evolution of the electronic properties especially at the interface between two materials with different properties. During this thesis, we built-up a scanning probe microscope at 100mK that combine both atomic force microscopy (AFM) and scanning tunneling microscopy (STM). AFM helps to locate a single nanocircuit on insulating substrate thanks to a Length Extension Resonator (LER). We can then measure the tunneling spectroscopy on the conductive nanocircuit. The energy resolution of the system is of 70µeV. We show the experimental proof of such a system by measuring the proximity effect in copper island (normal island) connected by two superconducting leads in aluminum at equilibrium, out of equilibrium and with a magnetic field. We also measured the LDOS of graphene on Ir(111) that displays electronic properties close to the one of intrinsic graphene with p-doping of about 0.34eV. We observe spatial inhomogeneities of this doping forming charge puddles with a typical size af about 9nm. Those observations are close to previous results reported on graphene on SiO2. However, the profile of the measured puddles shows a strong correlation with the topography due to the modulation of the electrostatic potential induced by the metal below the graphene. A closer look to the DOS shows quasiparticles interferences forming DOS inhomogeneities. The typical size of the DOS structures is of the order of the Fermi wavelength with a linear dependence with energy as E=ħvFk with vF = 8.3±0.7x10^5m/s which is close to the theoretical Fermi velocity of 1x10^6m/s. This point out the presence intravalley scattering and demonstrate the fact that particles in graphene on Ir(111) are Dirac fermions without mass
Amélioration des propriétés physiques de matériaux de basse-dimensionnalité par couplage dans des hétérostructures Van der Waals by Goutham Nayak( )

1 edition published in 2018 in English and held by 2 WorldCat member libraries worldwide

The extraordinary intrinsic properties of low dimensional materials depend highly on the environment they are subjected to. Hence they need to be prepared, processed and characterized without defects. In this thesis, I discuss about how to control the environment of low dimensional nanomaterials such as graphene, MoS₂ and carbon nanotubes to preserve their intrinsic physical properties. Novel solutions for property enhancements are discussed in depth. In the first part, we fabricate state-of-the-art, edge-contacted, graphene Van der Waals(VdW) heterostructuredevices encapsulated in hexagonal-boron nitride(hBN), to obtain ballistic transport. We use a technique based on 1/f-noise measurements to probe bulk and edge transport during integer and fractional Quantum Hall regimes. In the second part, the same fabrication concept of VdW heterostructures has been extended to encapsulate monolayer MoS₂ in hBN to improve optical properties. In this regard we present an extensive study about the origin and characterization of intrinsic and extrinsic defects and their affect on optical properties. Further, we describe a technique to probe the interlayer coupling along with the generation of light with spatialresolution below the diffraction limit of light. Finally, we discuss a natural systemic process to enhance the mechanical properties of natural polymer silk using HipCO-made single walled carbon nanotubes as a food for silkworm
Energétique dans les dispositifs à un seul électron basés sur des îlots métalliques et des points quantiques by Bivas Dutta( )

1 edition published in 2018 in English and held by 2 WorldCat member libraries worldwide

At this age of technologically advanced world, the electronic devices are getting more and more densely packed with micro-electronic elements of nano-scale dimension. As a result the heat dissipation produced in these microelectronic-circuits is also increasing immensely, causing a huge amount of energy loss without any use. The thermoelectric effects come into play here as one can use this wasted heat to produce some useful work with the help of thermoelectric conversion. In order to achieve such a heat engine with a reasonably high efficiency, one needs to understand its thermal behavior at the basic level. Therefore, the study of thermal transport and thermoelectric effect in nano-structures has significant importance both from scientific and application point of view.In this thesis we present the experimental studies of thermal and thermoelectric transport in different kinds of single-electron devices, where the electronic flow can be controlled at the single electron level.First, we demonstrate the measurement of gate-controlled heat transport in a Single-Electron Transistor (SET), acting as a heat switch between two heat reservoirs. The measurement of temperature of the leads of the SET allows us to determine its thermal conductance with the help of a steady state heat-balance among all possible paths of heat flow. The comparison of thermal conductance of the SET with its electrical conductance indicates a strong violation of the Wiedemann-Franz (WF) law away from the charge degeneracy.Second, we extend the study of thermal transport in single-electron devices to the quantum limit, where in addition to the Coulomb interactions the quantum effects are also need to be taken into account, and therefore the individual discrete electronic levels take part in the transport process. We discuss the heat-balance between two heat reservoirs, coupled through a single Quantum-Dot (QD) level, and the dissipation of the tunneling electrons on the leads. This produces Coulomb-diamond shapes in the electronic-temperature map of the `source' lead, as a function of bias and gate voltage. Third, we present the measurement of thermoelectric transport in a single QD junction, starting from the weak coupling regime to the strong coupling-Kondo regime. The experiments introduces a new way of measuring thermovoltage realizing a close to perfect open-circuit condition. The thermopower in a weakly coupled QD shows an expected "e" periodic behavior with the gate-induced charge, while it shows a distinct "2e" periodic feature in the presence of Kondo spin-correlation. The temperature dependence study of the Kondo-correlated thermopower reveals the fact that the Kondo-resonance is not always pinned to the Fermi level of the leads but it can be slightly off, in agreement with the theoretical predictions. This study opens the door for accessing a single QD junction to operate it as a QD-heat engine, where the thermodynamic properties of the device are governed by the laws of textit{quantum thermodynamics}
MACHe3 : prototype d'un détecteur bolométrique de matière sombre non-baryonique à base d'3He superfluide by Clemens Winkelmann( Book )

2 editions published in 2004 in French and held by 2 WorldCat member libraries worldwide

Superfluid Helium-3-B at ultra-Iow temperatures (100 microK) is a promising target material for the search by direct detection of nonbaryonic Dark Matter, and namely of the neutralino predicted by supersymmetric extensions of the standard particle mode!. We describe and characterise a 3-cell prototype of a bolometric detector based on superfluid helium-3.Thermometry is achieved by Vibrating Wire Resonators. The coincident detection in more than one cell allowed therefore to demonstrate the rejection efficiency of ionising events by a large array of cells. The presence in one cell of a radioactive Cobalt-57 source, emitting gamma-rays of 136 and 122 keV as weil as low energy electrons (7 and 14 keV), iIIustrated the transparency of the target material to gamma-rays as weil as our ability to detect events on the keV level, which is the range where the neutralino signal is expected. An extensive description of the bolometric calibration of the detector is given, as a function of the superflu id temperature and the excitation level of the Vibrating Wire Resonator. The observed difference of the expected energy depositions in the case of the low energy electrons and cosmic muons with respect to our bolometric measurements is interpreted in terms of ultra-violet scintillation of the helium-3
Dynamique quantique dans un tourniquet à électrons basé sur une boîte quantique by David Van Zanten( )

1 edition published in 2015 in English and held by 2 WorldCat member libraries worldwide

Accurate control over the state and motion of single individual electrons would enable a variety of appealing applications reaching from quantized to quantum coherent electron sources. Realizing the accuracy of quantized current sources required for a metrological standard is however extremely challenging and has naturally fuelled fundamental research into single electron transport through mesoscopic structures. A promising candidate, foreseen to meet the demand, combines the concept of quantized charge in single electron transistors (SETs) and the gapped density of states in superconducting metals (hence called hybrid electron turnstile), to produce a quantized current. The time-correlated electron transport (sub-poissonian) between the superconducting leads is conveyed by the continuous density of states of the central normal island. The large amount of available states at the normal island, although favorable in terms of tunnel coupling, has nevertheless two important ramifications i.e. 1) thermal fluctuations and 2) adverse higher-order processes, which limit the performance of hybrid electron turnstiles. Inspired by this ingenious application and the advances in quantum dot trans- port, we explore the operation of a hybrid electron turnstile embodying a bottom-up quantum dot instead of the usual metallic island. The desired devices are obtained by controlled electromigration of aluminium nano-wires preceded by the deposition of gold nano-particles. This in-situ process (conducted at 4 K) produces pristine tunnel junctions between aluminium leads and gold nano-particles with a yield of about 4%. We characterize the stationary and turnstile operation by direct current measurements at 100 mK, in a heavily filtered, but electromigration compatible, inverse dilution refrigerator. Analysis of the acquired conductance maps under stationary conditions, reveal a large charging energy (> 10 meV) and mean level spacing (> 1 meV). With a detailed study of the coherence peak broadening at the Coulomb blockade (CB) threshold, we show that electron transport through the quantum dot is conveyed by a single quantum level. Although the tunnel coupling is weak, the single level life-time is dominated by the lead - quantum dot hybridization as thermal energy fluctuation and in-elastic scattering are suppressed by the large single level spacing on the quantum dot and the superconducting gap in the leads. The observation of sub-threshold resonances parallel to the CB diamond edges are consistent with earlier predicted higher-order Cooper-pair - electron (CPE) cotunneling processes. Under turnstile operation a periodic modulation signal (sine or square wave) is added to the static gate potential. We demonstrate quantized current up to 200 MHz at which its accuracy starts to worsen due to missed tunnel events. Strong experimental evidence of the single quantum dot level nature of our turnstile device is provided by a sharp onset of backtunneling processes and the temperature-robust operation beyond 300 mK. Finally we observe a systematic current suppression unique to the low frequency sine wave operation. Supported by theoretical work, we show that the underlying missed tunnel events are caused by adiabatic traverses across the avoided crossing of a quantum dot level and superconducting gap edges. These experiments deliver the first experimental observation of the level repulsion between an electronic discrete state and a semi-continuum and demonstrate the quantum coherent evolution of our devices under adiabatic operation conditions
Magnetic resonance in superconducting junctions by Lars Elster( )

1 edition published in 2016 in English and held by 2 WorldCat member libraries worldwide

In this thesis we investigate the possibility to change the charge current in superconducting junctions by manipulating the spin properties using magnetic resonance. We consider two different junctions: First, an unconventional Josephson junction between a conventional s-wave superconductor and an unconventional px-wave superconductor and second a half-metal/conventional superconductor junction. The spx junctions hosts two spin-polarized Andreev bound states, which are 2pi-periodic, giving rise to a spontaneous magnetization in equilibrium. This opens the possibility to manipulate the occupations of the Andreev levels using a time-dependent magnetic field. We show that the field induces coherent Rabi oscillations between different spin states of the junction that appear as resonances in the current-phase relation. For a cicularly polarized magnetic field, we find a spin selection rule, giving Rabi oscillations only in a certain range of superconducting phase differences, which provides a spin detection scheme. In contrary, for a linear polarization, there is no spin constraint on the Rabi oscillations. The field also induces non-coherent transitions including continuum states that act as refill and ionization processes for the Andreev levels. For a circularly polarized field, these field-induced processes do not provide a decay mechanism for Rabi oscillations, due to spin and energy constraints. For a linear polarization, the width of the Rabi resonances in the current-phase relation is determined by the field-induced ionization processes. In the half-metal/conventional superconductor junction no Andreev current may flow for a static magnetization direction, since the perfect spin polarization of the half-metal forbids Andreev reflection processes at the interface. We show that an Andreev current flows, if the half-metal is subject to ferromagnetic resonance. The precessing magnetization direction in the half-metal provides the necessary spin-flip mechanism. The current is driven by the precession of the magnetization direction that creates a non-equilibrium situation for the charge carriers. We also show for a point contact geometry that in a ferromagnet with non-zero minority carrier concentration the current is reduced and vanishes at equal minority and majority carrier concentrations. Additionally, we consider a more realistic, extended interface geometry. For a ballistic junction, the current is enhanced compared to a point contact geometry due to the larger number of transport channels. Furthermore, we show that disorder is most important in the ferromagnet. The Andreev current through the disordered junction is much larger than the current through a ballistic junction in the same geometry
Désordre de charge et écrantage dans le graphène by Sayanti Samaddar( )

1 edition published in 2015 in English and held by 2 WorldCat member libraries worldwide

Le graphène héberge un gaz d'électrons bi-dimensionnel, sujet à un potentiel électrostatique désordonné dû aux impuretés de charge dans le substrat. Ce potentiel désordonné induit des inhomogénéités de la densité de porteurs de charge dans le graphène. Par ailleurs, l'écrantage dans le graphène mono-feuillet de ce potentiel dépend lui-même de la densité de porteurs de charge. L'effet du désordre de charge peut donc être modulé avec un potentiel de grille global, ce qui se manifeste en particulier dans la transconductance de dispositifs à base de graphène. Nous combinons des mesures par Microscopie/Spectroscopie à effet tunnel avec des mesures de transport in situ sur des dispositifs à base de mono-feuillets de graphène sur SiO2, à basse température. Les cartes de la densité locale d'états du graphène, à diverses tensions de grille, mettent en évidence l'augmentation progressive des dimensions latérales ainsi que de l'amplitude des inhomogénéités au voisinage du point de Dirac. Alors que la dépendance en grille de la taille des inhomogénéités est en bon accord avec les prédictions, leur amplitude est plus forte qu'attendue au point de Dirac. Nous expliquons ce désaccord en prenant en compte l'effet de grille local produit par la pointe elle-même, qui a pour effet d'amplifier expérimentalement toute variation de la densité de porteurs de charge lorsque celle-ci elle faible. Cette expérience est ainsi la première mesure qui relie quantitativement les propriétés de désordre de charge à l'échelle microscopique aux propriétés de transport macroscopiques d'un dispositif à base de graphène
Electronic transport in spin-glasses and mesoscopic wires : correlations of universal conductance fluctuations in disordered conductors by Mathias Solana( )

1 edition published in 2018 in English and held by 2 WorldCat member libraries worldwide

The experimental work developed during this PhD is situated at the interface of two fields of condensed matter physics, namely spin glasses and mesoscopic physics. Spin glasses have been widely studied and are one of the problem that has been the most discussed over the years, both on a theoretical and experimental point of view. This state is characterized by very peculiar properties that come to light as it exhibits a magnetic phase transition at low temperatures that is already unusual. Indeed, this transition is due to a mix of frustration and disorder in the magnetic structure of the system, making it an exceptional model system for glasses and frustrated systems in general. After many efforts, theoreticians managed to described the fundamental state of the system by the mean of two different and apparently incompatible approaches. The first one, called RSB theory, is based on a mean-field approximation and predicts a complex phase space with an unconventional hierarchical organization. The second is based on more phenomenological approach and is named Droplet theory. It points towards a unique ground state and explain all the observation by slow relaxation processes. However, the question of the true nature of the spin glass phase is still heavily debated. Mesoscopic physics, for its part, addresses the question of electronic transport for samples in which the electrons keep their phase coherence. If the electrons remains coherent, it is possible to see interference effects that are quantum signs of what happens at the atomic level. In this work, it is used to probe the magnetic and static disorder in spin glasses. Indeed, it is possible to interpret the change in those interferences as changes in the microscopic disorder configuration and to know exactly how the spin glass state evolves. Some work have already tried to use coherent transport in spin glasses but this remains an open field. This work has then be dedicated to the implementation of transport measurement in spin glasses and mesocopic conductors. The first part will be focused on a the experimental setup that was used to perform very precise transport measurements and on the processing of the data taken out of them. In a second part, we will present some general physical characteristics of our samples such as their resistance dependence to the temperature or magnetic field, before extracting the quantum signature in magnetoresistance measurements. Finally, we will discuss the results obtained. We show that strong changes in the microscopic disorder happen even at low temperatures, in opposition to what is believed. We argue that those observed changes are purely structural and come from systems that are widely distributed in energy
Modulation de la supraconductivité hors équilibre avec un STM by Thomas Jalabert( )

1 edition published in 2020 in English and held by 1 WorldCat member library worldwide

Les performances des circuits supraconducteurs sont souvent limitées par la dynamique des quasiparticules, c'est pourquoi la supraconductivité hors équilibre suscite un intérêt de longue date. Pour sonder les mécanismes microscopiques mis en jeu dans un tel système, l'injection de quasiparticules a déjà été réalisée à l'aide de jonctions tunnel à l'échelle mésoscopique grâce aux progrès de la nanotechnologie moderne. Cependant, les jonctions tunnel lithographiées ont une résolution spatiale limitée et ne permettent pas de faire varier indépendamment la tension appliquée et le courant tunnel. Afin de surmonter ces difficultés, la nouveauté de ce travail de thèse est d'utiliser un microscope à effet tunnel (STM) fonctionnant à très basse température (50 mK) pour moduler le courant critique de nanofils supraconducteurs en faisant varier la position de la pointe et les conditions tunnel.Dans de fins nanofils de niobium recouverts d'or, nous avons mesuré une réduction radicale du courant critique en injectant par effet tunnel un courant de quasiparticules inférieur de six ordres de grandeur. Nous interprétons cette observation par une augmentation locale de la température électronique, et suggérons également que ce même mécanisme est à l'oeuvre dans les transistors supraconducteurs à effet de champ (SuFETs). Le courant critique dépend fortement de la position d'injection dans le nanofil, du taux d'injection et de l'énergie des quasiparticules. Pour des énergies grandes devant le gap supraconducteur, la réduction du courant critique est contrôlée par la puissance injectée. Nos mesures montrent que la diffusion de chaleur par les quasiparticules et les phonons explique la dépendance du courant critique avec la puissance et la position d'injection, et permettent de sonder le couplage électron-phonon dans nos échantillons. En revanche, en diminuant l'énergie des quasiparticules à taux d'injection constant, le courant critique décroit fortement près du gap supraconducteur, ce qui montre que le modèle de quasi équilibre thermique n'est plus valide. Nous expliquons ce comportement par une fonction de distribution des quasiparticules hors équilibre et non Fermi Dirac, et ceci nous permet d'estimer le taux de relaxation des quasiparticules. Nous avons également étudié les propriétés spectrales des nanofils en présence de courant, et induit des vortex avec un champ magnétique pour créer des inhomogeneités spatiales dans la densité d'état. Nous avons ainsi mis en évidence l'effet de piégeage des quasiparticules par les vortex à l'échelle nanométrique, ce qui présente un intérêt particulier puisque jusqu'ici les seules expériences qui permettaient d'étudier la dynamique d'un système supraconducteur inhomogène sondaient nécessairement un volume macroscopique, rendant difficile l'interprétation des mesures en termes d'inhomogénéité. Par conséquent, ce travail expérimental ouvre une nouvelle perspective pour étudier la compétition entre diffusion, relaxation et recombinaison de quasiparticules dans les supraconducteurs fortement désordonnés, avec de nombreuses applications dans les domaines de la détection de photons et de l'électronique supraconductrice
Le graphène comme barrière tunnel : propriétés d'injection de charges et de spin by Florian Godel( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

My PhD thesis deals with the fabrication and the electric and magnetic characterizations of magnetic tunnel junctions based on graphene. The interaction of graphene with its close environment opens new possibilities for spintronics applications. The manuscript is focused on the improvement of the understanding of mechanisms involved in the injection and detection of a polarized spin current at the graphene/ferromagnetic interfaces. We show that it is possible to grow epitaxially MgO tunnel barrier on graphene. We study the spin transport mechanisms in vertical junctions of Co/MgO/Gr/Ni. The interaction of graphene with nickel electrode is probed through tunnel magnetoresistance inversions which can be explained by the activation of phonon assisted conduction channel. We also measure in vertical and lateral devices based on alumina barrier on graphene, reproducible Coulomb blockade processes linked to the presence of monodisperse aluminum clusters at the graphene edge
Engineering topological states in arrays of magnetic molecules in interaction with a 2D superconductor by Danilo Longo( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Des études récentes ont prédit que l'interaction entre un supraconducteur 2D et du magnétisme local pourrait induire une supraconductivité topologique accompagnée d'états de bord de type Majorana. Pour relever ce défi, nous avons étudié un système basé sur l'interaction entre des auto-assemblages d'aimants moléculaires, tels que les phtalocyanines de manganèse (MnPcs), sur des films minces de plomb (1 et 3 monocouches) épitaxiés sur des surfaces de Si(111) qui montrent une supraconductivité 2D. Nos expériences de Microscopie à effet tunnel (STM) ont révélé que l'adsorption d'une petite quantité de MnPcs sur la monocouche de Pb est accompagnée d'un très faible transfert de charge qui induit une transition de phase structurale macroscopique de la surface elle-même. Les expériences de Spectroscopie à effet tunnel (STS) à 300 mK sur des îlots tricouches de Pb/Si(111) ont montré la présence d'effets non triviaux responsables de la fluctuation spatiale de l'amplitude des pics de cohérence sur des longueurs bien inférieures à la longueur de cohérence supraconductrice. De plus, contrairement à ce qui a été montré sur des monocristaux de plomb, les expériences STS suggèrent que les MnPcs isolées sur des îlots tricouches de plomb se trouvent toujours dans un régime d'interaction faible avec le substrat. L'ensemble de nos résultats, ainsi que l'observation d'une signature spectroscopique localisée sur le bord d'un domaine auto-organisé de MnPcs ouvrent la voie à de futures études sur l'ingénierie des phases topologiques supraconductrices
Yu-Shiba-Rusinov states in superconductor-quantum dot transistors made by electromigration by Alvaro Garcia Corral( )

1 edition published in 2020 in English and held by 1 WorldCat member library worldwide

Une impureté magnétique intégrée dans un supraconducteur (SC) peut avoir un effet perturbateur sur la supraconductivité, réduisant localement l'énergie d'appariement des paires de Cooper et conduisant à la génération d'états sous-gap Yu-Shiba-Rusinov (YSR) autour d'elle.L'interaction d'échange entre le spin à l'impureté et les électrons au milieu favorise une configuration de singulet d'écrantage Kondo, tandis que les corrélations supraconductrices s'opposent à la formation d'un nuage d'écrantage, laissant l'impureté non-écrantée à l'état de doublet. L'état fondamental local (GS) du système est ensuite déterminé par l'interaction complexe entre les deux phénomènes, donnant lieu à des propriétés intrigantes qui ont fait l'objet d'un grand intérêt au cours de la dernière décennie.Les dispositifs hybrides mettant en contact des structures à boîte quantique (QD) avec des bornes supraconductrices offrent une plateforme idéale pour l'étude d'une telle concurrence, car les QD peuvent également montrer un caractère magnétique pour les occupations impaires. Dans cette thèse, nous étudions les propriétés de transport des QD colloïdaux (nanoparticules métalliques et fullerènes) mis en contact individuellement avec des bornes d'aluminium nues à travers des barrières tunnel faites par électromigration, dans une configuration de transistor. La combinaison d'une densité d'états fortement discrétisée dans des QD colloïdaux avec à net gap présent dans l'aluminium supraconducteur permet de mesurer les spectres YSR, apparaissant dans des jonctions SC-QD-SC affichant une grande asymétrie dans le couplage tunnel, avec une résolution sans précédent. La réponse du système SC-QD versus la tension de grille, le champ magnétique externe et la température a été caractérisée, identifiant le point de transition (QPT) dès la phase singulet-GS au doublet-GS. Une reprise frappante de la position du QPT est révélée à de faibles champs magnétiques, attribuée à la séparation Zeeman de l'état du doublet
Proximity effect between a high temperature superconductor and graphene by David Perconte( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Nous avons fabriqué des jonctions YBCO graphène, nous avons étudié dans un premier temps le transport électronique à l'interface entre ces deux matériaux ainsi que le mécanisme - la réflexion d'Andreev - par lequel un courant porté par des électrons est transformé en courant par des paires de Cooper. Nous avons observé des interférences électroniques en fonction du niveau de dopage du graphène. Ces interférences correspondent au tunneling de Klein d'électrons normaux quand l'énergie de ces électrons dépassent le gap supraconducteur. A plus basse énergie, ce sont les paires de Cooper qui passent la barrière par effet tunnel de Klein. Dans un deuxième temps, nous avons fabriqué des jonctions YBCO graphène dont la taille est comparable à la longueur de cohérence du graphène. Nous avons observé d'une part un comportement tunnel de la conductance dans le cas où l'interface graphène YBCO est sale. Dans le cas où l'interface YBCO graphène est propre, nous avons observé des oscillations de la conductance de la jonction en fonction de la tension de biais ainsi que de la tension de grille. Ces oscillations semblent provenir d'interférences électroniques dans le canal de graphène entre les électrodes supraconductrices. Enfin, nous présentons une nouvelle méthode de fabrication de jonction phi à base de BSCCO
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.00 (from 0.00 for MACHe3 : p ... to 0.00 for MACHe3 : p ...)

Alternative Names
Clemens Winkelmann onderzoeker

Languages
English (10)

French (4)