WorldCat Identities

Cazaurang, Franck

Overview
Works: 12 works in 24 publications in 2 languages and 197 library holdings
Roles: Editor, Author, Thesis advisor, Other, Opponent
Classifications: TL685.35, 623.7469
Publication Timeline
.
Most widely held works by Franck Cazaurang
Multi-rotor platform based UAV systems by Franck Cazaurang( )

11 editions published between 2017 and 2020 in English and held by 183 WorldCat member libraries worldwide

Multi-rotor Platform Based UAV Systems provides an excellent opportunity for experiential learning, capability augmentation and confidence-building for senior level undergraduates, entry-level graduates, engineers working in government agencies, and industry involved in UAV R&D. Topics in this book include an introduction to VTOL multi-copter UAV platforms, UAV system architecture, integration in the national airspace, including UAV classification and associated missions, regulation and safety, certification and air traffic management, integrated mission planning, including autonomous fault tolerant path planning and vision based auto landing systems, flight mechanics and stability, dynamic modeling and flight controller development. Other topics covered include sense, detect and avoid systems, flight testing, including safety assessment instrumentation and data acquisition telemetry, synchronization data fusion, the geo-location of identified targets, and much more
Contribution à la caractérisation LPV d'une classe de systèmes non linéaires pour la synthèse de lois de poursuite robuste : application à un système spatial by Madjid Zerar( )

2 editions published in 2006 in French and held by 3 WorldCat member libraries worldwide

Ce travail de recherche présente une étape importante pour la synthèse de loi de poursuite robuste de trajectoires d'une classe particulière de systèmes non linéaires. Cette étape concerne la caractérisation des systèmes non linéaires plats perturbés, à platitude invariante, sous forme de systèmes Linéaires à Paramètres Variants dans le temps (LPV). La méthodologie utilisée est basée sur la linéarisation exacte par anticipation fondée sur la platitude. L'approche présentée permet de générer, en utilisant la platitude, des trajectoires et des commandes optimales en boucle ouverte pour un modèle fixé. Elle permet également d'obtenir un modèle non linéaire du comportement dynamique de l'écart de la trajectoire induit par des erreurs de modèle et des perturbations extérieures. Après linéarisation du modèle non linéaires de l'écart le long de la trajectoire nominale, le comportement dynamique du modèle linéarisé obtenu est caractérisé par un modèle LPV. Ce dernier sera ensuite utilisé pour synthétiser un régulateur LPV garantissant stabilité et niveau de performance acceptable, en utilisant les outils des inégalités Matricielles Linéaires (LMI). Cette méthode appliquée et testée dans un premier temps sur un procédé hydraulique du laboratoire (trois tanks) et ensuite mise en oeuvre pour le guidage d'un Démonstrateur de Rentrée Atmosphérique (ARD)
Commande robuste des systèmes plats : application à la commande d'une machine synchrone by Franck Cazaurang( Book )

2 editions published in 1997 in French and held by 2 WorldCat member libraries worldwide

Ce travail propose une méthodologie de synthèse de loi de commande robuste pour les systèmes dynamiques plats. La génération de trajectoires de référence est simple à mettre en oeuvre pour un système plat car il est équivalent à un système linéaire par difféomorphisme et bouclage. Cependant cette démarche n'est valable que pour un modèle, et en l'absence de perturbations. Pour une famille de modèles, et en présence de perturbations exogènes, le suivi de trajectoire défini à partir du modèle nominal est garanti par un régulateur linéaire synthétisé par optimisation de critères. L'utilisation d'un schéma à deux degrés de liberté générique permet de poser clairement le problème de synthèse en séparant les objectifs de poursuite nominale et les objectifs de régulation et de poursuite robustes. Cette démarche est ensuite appliquée à la synthèse d'une loi de commande robuste d'une machine synchrone
Caractérisation des sorties plates pour le diagnostic de systèmes entiers ou non entiers : application pour le diagnostic d'un système hydraulique et d'un système thermique by Rim Rammal( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

The differential flatness is a property of dynamic systems that allows the transformation of a very complex system into a simpler one called flat system. Roughly speaking, a dynamic system is said to be flat if, and only if, there exists a vector, called flat output vector and formed by the state and input variables, such that all the system states, inputs and outputs can be expressed in function of this new vector and its successive time derivatives. The differential flatness property has many applications in automatic control theory, such as trajectory planning, trajectory tracking and the designing of robust controllers. Moreover, the flatness property has recently entered the field of fault detection and isolation. In short, fault detection and isolation is a sub-domain of automatic control engineering that deals with monitoring a system, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is performed by analyzing the difference between sensor and actuator measurements and their expected values, derived from any model and called redundant values. It is common to say that an error is detected if the deviation or residue exceeds a certain predefined threshold. Fault isolation, in turn, must make it possible to locate the fault in the machine. The most recent method of fault detection and isolation, based on the flatness property, calculates redundant variables from the measurement of the flat output of the system and its successive time derivatives. Then, the residues are deduced from the difference between the measured variables and the redundant variables. Fault detection by this method is guaranteed. However, the use of a single flat output does not allow, in some cases, to isolate some faults. The idea proposed by the developers of the method was to use several flat outputs to increase the number of the residual signals, which would increase the chances of isolating more faults. However, it was also noticed that the choice of these flat outputs is not arbitrary. That is, there are flat outputs that, when used together, increase the isolability of faults and others that do not. One of the objectives of this manuscript is to characterize the flat outputs in order to obtain a better fault isolability. This characterization is then verified by simulations and experiments on a hydraulic system, the three-tank system.Over the last decade, numerous studies have shown that there are systems such as thermal systems, viscoelastic systems and chemical systems that can be modeled by fractional differential equations. Therefore, classical methods of fault detection and isolation, originally developed to deal with integer order systems, were not suitable for fractional order systems, and fault detection and isolation methods specific to fractional order systems had to be developed. A second objective of this manuscript is to extend the characterization of flat outputs, proposed for the class of integer order flat systems to the class of fractional order linear flat systems, and then to apply this characterization to the detection and isolation of faults that may appear on the sensors and actuators of these systems. The effectiveness of this characterization is also verified by simulations on a bi-dimensional thermal system
Fault tolerant control by flatness approach by César Martínez Torres( )

1 edition published in 2014 in French and held by 1 WorldCat member library worldwide

The objective of this Ph.D. work is to provide a flatness based active fault-tolerant control technique. For such systems, it is possible to find a set of variables, named flat outputs, such that states and control inputs can be expressed as functions of flat outputs and their time derivatives. The fault detection and isolation block has to provide a fast and accurate fault isolation. This action is carried out by exploiting the non-uniqueness property of the flat outputs. In fact, if a second set of flat outputs which are coupled by a differential equation of the first is calculated, bthe number of residues augments. Differentially coupled means that it exists an equation with time derivatives inside, that couple one element of the first set with one of the second. As a consequence of augmenting the number of residual signal more faults than in the one set case may be isolated.Regarding reconfiguration, if the flat system complies with the properties listed above, we will obtain versions of states and control inputs as much of flat output vectors, are found, because each control input and state is a function of the flat output. The proposed approach provides in this manner one measure related to a faulty flat output vector and one or more computed by using an unfaulty one. The redundant state signals could be used as reference of the controller in order to hide the fault effects. This will be helpful to provide an entirely flatness based fault-tolerant control strategy.The works presented in this manuscript are under the following hypothesis: The flat outputs are functions of the state of the system, however in this work the flat outputs are constrained to be states of the system or a linear combination of them.The control loop is closed with a state feedback controller.For purposes of this work flat outputs need to be measured.Faults affecting the actuators are considered rejected by the controller; by consequence reconfiguration is only carried out after a sensor fault occurs.Feasibility of the proposed approach is analyzed in two nonlinear plants, an unmanned quadrotor and a three tank system
Identification of aerodynamic coefficients from free flight data by Marie Albisser( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

The use of aerodynamic coefficients for the characterization of the behaviour of an object in flight remains one of the oldest and most emergent research project in the field of exterior ballistic. The present study investigates the identification of the aerodynamic coefficients based on measured data, gathered during free flight tests from different measurement techniques. This project deals with topics as modelling, defining and mastering parameter identification techniques best suited to the problem of the aerodynamic coefficients determination. In the frame of this study, an identification procedure was developed for the aerodynamic coefficients determination based on free flight measurements and was tested for two application cases: a re-entry space vehicle and a fin stabilized reference projectile. This procedure requires several steps such as the description of the behaviour of the vehicle in free flight as a nonlinear state-space model representation, the polynomial descriptions of the aerodynamic coefficients as function of Mach number and incidence, the a priori and a posteriori identifiability analyses, followed by the estimation of the parameters from free flight measurements. Moreover, to increase the probability that the coefficients define the vehicle's aerodynamics over the entire range of test conditions and to improve the accuracy of the estimated coefficients, a multiple fit strategy was considered. This approach provides a common set of aerodynamic coefficients that are determined from multiple data series simultaneously analyzed, and gives a more complete spectrum of the vehicle's motion
Lateral stability and control of an aircraft equiped with a small fin by differential use of propulsion systems or by actuators such that butterfly airbrakes. Use of co-design methods by Eric Nguyen Van( )

1 edition published in 2020 in French and held by 1 WorldCat member library worldwide

The possibility to increase the performance of a transport aircraft through a relaxation of the directional static stability, also called weathercock stability, is studied in this thesis. A change of paradigm brought by the concept of distributed electric propulsion allows the consideration of an active use of differential thrust. This additional means of flight control and the reduction of the vertical tail are the main ideas explored in this work. In a first part, the directional static stability and controllability of an aircraft are evaluated to find the sizing flight conditions for the vertical tail. The contribution here is to take into account the specificities of the unconventional propulsion system. Mathematical tools are developed to trim the aircraft using differential thrust as a mean of directional control and aerodynamic tools are constructed to describe the variable vertical tail size and the aero-propulsive interactions taking place between a propeller and a wing. This analysis isolates a sizing flight condition, particularly the case of engine failure at take-off, for the vertical tail and leads to a significant reduction in surface area. It is also shown that the rudder control surface could be removed and replaced by differential thrust. In a second part, the flight dynamic aspects of an aircraft with a small vertical tail and differential thrust as the only means of directional control are studied. A methodology is proposed to answer the question of how should the vertical tail and propulsion system be designed to satisfy a set of prescribed flight handling qualities ? An automatic control architecture and co-design methodology relying on structured H1 control design and non convex optimisation tools are utilized and developed to manage the trade off between vertical tail size and engine bandwidth. This framework is used in the flight conditions defined in the first part and notably in presence of engine failures. In a last part, a means of experimental research is developed to contribute to an effort to produce experimental data on distributed electric propulsion. This flight demonstrator is specifically oriented toward the study of the lateral flight mechanics of an aircraft having a large portion of the wing embedded in the propeller slipstream. It was possible to identify the aerodynamic derivatives and their dependence on the thrust from the flight data to illustrate the particularity of flight dynamics with distributed propulsion and blown wing
Diagnostic à base de modèles non linéaires. : Application au circuit carburant d'une turbomachine by Mohcine Sifi( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

The current gas turbine regulation systems are based on complex architectures that manufacturers tend to make more modular with more cost effective technologies while ensuring a greater or equal level of reliability. In this context, the fuel system health monitoring, which aims to identify critical hydraulic components dysfunction, allows to reduce maintenance costs, to improve maintainability level and to ensure gas turbine availability. The present study focuses on the development of performant and robust diagnosis methods for the detection and isolation of faults affecting primary fuel system hydraulic functions. Existing nonlinear model based residual generation methods are presented and applied to the fuel system. The analytical approach for decoupling, combined with extended Kalman filters, helps fault isolation by generating residual structures. A new approach based on differential flatness theory is proposed for nonlinear systems fault diagnosis with an application to the fuel system. Sliding mode differentiators are used to estimate derived signals that are necessary for the application of some residual generation methods. Numerical simulations illustrate the efficiency of obtained results. An experimental application is presented using a real data set from a partial test bench provided by Turbomeca company of the SAFRAN group
Outils d'analyses et de synthèses des lois de commande robustes des systèmes dynamiques plats by Loïc Lavigne( )

1 edition published in 2003 in French and held by 1 WorldCat member library worldwide

Ce travail propose une méthodologie d'analyse et de synthèse de lois de commande robustes pour les systèmes dynamiques plats perturbés. Pour une famille de modèles perturbés, le suivi de trajectoire nominale déterminée à l'aide du concept de platitude, est garanti par un régulateur linéaire déterminé par optimisation de critères H[infini]. Cette synthèse et/ou analyse est basée dans un premier temps sur une famille de modèle LTI modélisant le comportement dynamique du procédé au voisinage de la trajectoire de référence. En vue d'une réduction du conservatisme une nouvelle méthodologie est ensuite proposée pour obtenir une modélisation LPV de la dynamique de l'écart de trajectoire. Cette démarche est appliquée à la synthèse d'une loi de commande robuste pour un procédé multivariable et non linéaire, puis à l'analyse d'une loi de commande de vol dans le cadre du groupe de Recherche Européen GARTEUR AG11
Algorithmes et architectures pour la commande et le diagnostic de systèmes critiques de vol by Alexandre Bobrinskoy( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

Les systèmes critiques de vol tels que les actionneurs électromécaniques ainsi que les calculateurs de commande moteur (ECU) et de vol (FCU),sont conçus en tenant compte des contraintes aéronautiques sévères de sureté defonctionnement. Dans le cadre de cette étude, une architecture calculateur pourla commande et la surveillance d'actionneurs moteur et de surfaces de vol est proposée et à fait l'objet d'un brevet [13]. Pour garantir ces mesure de sureté, les ECU et FCU présentent des redondances matérielles multiples, mais engendrent une augmentation de l'encombrement, du poids et de l'énergie consommée. Pour ces raisons, les redondances à base de modèles dynamiques, présentent un atout majeur pour les calculateurs car elles permettent dans certains cas de maintenir les exigences d'intégrité et de disponibilité tout en réduisant le nombre de capteurs ou d'actionneurs. Un rappel sur les méthodes de diagnostic par générateurs de résidus et estimateurs d'états [58, 26, 47] est effectué dans cette étude. Les propriétés de platitude différentielle et la linéarisation par difféomorphisme et bouclage endogène [80, 41, 73] permettent d'utiliser des modèles linéaires équivalents avec les générateurs de résidus. Un banc d'essai a été conçu afin de valider les performances des algorithmes de diagnostic
Contribution au développement d'une loi de guidage autonome par platitude : application à une mission de rentrée atmosphérique by Vincent Morio( )

1 edition published in 2009 in French and held by 1 WorldCat member library worldwide

Cette thèse porte sur le développement d'une loi de guidage autonome par platitude pour les véhicules de rentrée atmosphérique. La problématique associée au développement d'une loi de guidage autonome porte sur l'organisation globale, l'intégration et la gestion de l'information pertinente jusqu'à la maîtrise du système spatial durant la phase de rentrée. La loi de guidage autonome proposée dans ce mémoire s'appuie sur le concept de platitude, afin d'effectuer un traitement des informations à bord, dans le but double d'attribuer un niveau de responsabilité et d'autonomie au véhicule, déchargeant ainsi le segment sol de tâches opérationnelles "bas niveau", pour lui permettre de mieux assumer son rôle de coordination globale. La première partie de ce mémoire traite de la caractérisation formelle de sorties plates pour les systèmes non linéaires régis par des équations différentielles ordinaires, ainsi que pour les systèmes linéaires à retards. Des algorithmes constructifs sont proposés afin de calculer des sorties plates candidates sous un environnement de calcul formel standard. Dans la seconde partie, une méthodologie complète et générique de replanification de trajectoires de rentrée atmosphérique est proposée, afin de doter la loi de guidage d'un certain niveau de tolérance à des pannes actionneur simple/multiples pouvant survenir lors des phases critiques d'une mission de rentrée atmosphérique. En outre, une méthodologie d'annexation superellipsoidale est proposée afin de convexifier le problème de commande optimale décrit dans l'espace des sorties plates. La loi de guidage proposée est ensuite appliquée étape par étape à une mission de rentrée atmosphérique pour la navette spatiale américaine STS-1
Commande robuste structurée : application au co-design mécanique / contrôle d'attitude d'un satellite flexible by Jose Alvaro Perez Gonzalez( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

Dans cette étude de thèse, le problème du co-design mécanique/contrôle d'attitude avec méthodesde la commande robuste structurée est considéré. Le problème est abordé en développant une techniquepour la modélisation de systèmes flexibles multi-corps, appelé modèle Two-Input Two-Output Port (TITOP).En utilisant des modèles d'éléments finis comme données d'entrée, ce cadre général permet de déterminer, souscertaines hypothèses, un modèle linéaire d'un système de corps flexibles enchaînés. De plus, cette modélisationTITOP permet de considérer des variations paramétriques dans le système, une caractéristique nécessaire pourréaliser des études de co-design contrôle/structure. La technique de modélisation TITOP est aussi étenduepour la prise en compte des actionneurs piézoélectriques et des joints pivots qui peuvent apparaître dans lessous-structures. Différentes stratégies de contrôle des modes rigides et flexibles sont étudiées avec les modèles obtenus afin de trouver la meilleure architecture de contrôle pour la réjection des perturbations basse fréquence etl'amortissement des vibrations. En exploitant les propriétés d'outils de synthèse H1 structurée, la mise enoeuvre d'un schéma de co-design est expliquée, en considérant les spécifications du système (bande passantedu système et amortissement des modes) sous forme de contraintes H1. L'étude d'un tel co-design contrôled'attitude/mécanique d'un satellite flexible est illustré en utilisant toutes les techniques développées, optimisantsimultanément une loi de contrôle optimisée et certains paramètres structuraux
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.57 (from 0.54 for Multi-roto ... to 0.97 for Multi-roto ...)

Multi-rotor platform based UAV systems
Covers
Languages
English (15)

French (9)