WorldCat Identities

Pascal, Frédéric (1979-....; (chercheur en traitement du signal))

Overview
Works: 14 works in 15 publications in 2 languages and 16 library holdings
Roles: Opponent, Other, Thesis advisor, Author
Publication Timeline
.
Most widely held works by Frédéric Pascal
Systèmes MIMO pour formes d'ondes mono-porteuses et canal sélectif en présence d'interférences by Sonja Hiltunen( )

1 edition published in 2015 in English and held by 2 WorldCat member libraries worldwide

Time synchronization of MIMO systems have been strongly studied in the last fifteen years, but most of the existing techniques assume a spatially and temporally white noise, which does not allow modeling the presence of interference. We consider thus a temporally white but spatially colored noise, with an unknown covariance matrix. Formulating the estimation problem as a hypothesis testing problem, we obtain a Generalized likelihood ratio test (GLRT), which gives us a synchronization statistics eta_GLRT. However, for complexity reasons, it is not always considered realistic for practical situations. A part of this work has thus been devoted to showing that there exist non-GLRT statistics that are less complex to implement than theet a_GLRT, while having similar performance. Furthermore, we perform a comparative parameter analysis, taking into consideration the noise type, channel type, the number of transmit and receive antennas, and the orthogonality of the synchronization sequence. Lastly, the problem of optimization of the number of transmit antennas K for time synchronization has been investigated. showing, for high SNR, increasing performance with K as long as the product KM is not larger than 8, where M is the number of receive antennas. The second aspect of MIMO synchronization studied in thesis is asymptotic analysis of the same GLRT, but for large M. In this context, the synchronization sequence length N is the same order of magnitude as M, and this leads us naturally to the study of the the behavior of eta_GLRT in the asymptotic regime where M,N go towards infinity such that M/N go towards a non-zero constant. We consider the case of a single transmit antenna in a multi-path channel, which formally is equivalent to the MIMO system where the transmit antennas correspond to the number of paths. We address the case When the number of paths L does not scale with M and N, we establish that eta_GLRT has a Gaussian behavior with asymptotic mean L log (1/ (1 - M/N))and variance (L/N)*(M/N)/(1-M/N).This is in contrast with the standard asymptotic regime N goes to infinity and M fixed where eta_GLRT has a chi^2 behaviour. Under hypothesis H_1, eta_GLRT still has a Gaussian behaviour. The corresponding asymptotic mean and variance are obtained as the sum of the asymptotic mean and variance in the standard regime N goes to infinity and M fixed, and L log(1/(1-/M/N))L log (1 / (1-M/N)) and (L/N)*(M/N)/(1-M/N)respectively, i.e. the asymptotic mean and variance under H_0.We also consider the case where the number of paths L converges towards infinity at the same rate as M and N. Using known results of concerning the behaviour of linear statistics of the eigenvalues of large F-matrices, we deduce that in the regime where L,M,N converge to infinity at the same rate, eta_GLRT still has a Gaussian behaviour under H_0, but with a different mean and variance. The analysis of eta_GLRT under H_1 whenL,M,N converge to infinity needs to establish a central limit theorem for linear statistics of the eigenvalues of large non zero-mean F-matrices, a difficult ask. Motivated by the results obtained in the case where L remains finite, we propose to approximate the asymptotic distribution of eta_GLRT by a Gaussian distribution whose mean and variance are the sum of the asymptotic mean and variance under H_0when L goes to infinity with the asymptotic mean and variance under H_1 in the standard regime N goes to infinity and M fixed. Numerical simulations allow to compare the ROC curves obtained with the different approximations with the empirical ROC curves. The results show that the large-system approximations provide better results when M/N increases, while also allowing to capture the actual performance for small values of M/N
Détection et estimation en environnement non gaussien by Frédéric Pascal( Book )

2 editions published in 2006 in French and held by 2 WorldCat member libraries worldwide

In the very general context of radar detection, traditional detectors, based on the assumption of Gaussian noise, are often put at fault since the environment (clutter of ground, of sea) becomes inhomogeneous, even impulse, deviating very quickly Gaussian model. Physical models of tumbles based on models of compound noise (Spherically Invariant Random Processes, Compound Gaussian Processes) provide a better representation of the reality. However, these models depend on several parameters, like the covariance matrix, the distribution of the texture and parameters of "disturbance", and it becomes necessary to estimate them. Then, after the estimation of these parameters, it is possible to build optimal radar detectors like the well-known Generalized Likelihood Ratio Test - Linear Quadratic, associated to these noise models. This thesis, based on these models, provides a complete analysis of different methods to estimate the covariance matrices, associated to the detection problem. It also describes performance and the theoretical properties (SIRV-CFAR) of detector GLRT-LQ built with these new estimators. These estimates are analyzed on data simulated but also tested on real data of ground clutter. The main results worked out in this work, first of all, are pointed out in a way detailed in the general conclusions. Several proposals, non-exhaustive, of direction of research remaining to be explored are proposed in the paragraph of the prospects
New statistical modeling of multi-sensor images with application to change detection by Jorge Prendes( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

Les images de télédétection sont des images de la surface de la Terre acquises par des satellites ou des avions. Ces images sont de plus en plus disponibles et leur technologies évoluent rapidement. On peut observer une amélioration des capteurs existants, mais de nouveaux types de capteurs ont également vu le jour et ont montré des propriétés intéressantes pour le traitement d'images. Ainsi, les images multispectrales et radar sont devenues très classiques.La disponibilité de différents capteurs est très intéressante car elle permet de capturer une grande variété de propriétés des objets. Ces propriétés peuvent être exploitées pour extraire des informations plus riches sur les objets. Une des applications majeures de la télédétection est la détection de changements entre des images multi-temporelles (images de la même scène acquise à des instants différents). Détecter des changements entre des images acquises par des capteurs homogènes est un problème classique. Mais le problème de la détection de changements entre images acquises par des capteurs hétérogènes est un problème beaucoup plus difficile.Avoir des méthodes de détection de changements adaptées aux images issues de capteurs hétérogènes est nécessaire pour le traitement de catastrophes naturelles. Des bases de données constituées d'images optiques sont disponible, mais il est nécessaire d'avoir de bonnes conditions climatiques pour les acquérir. En revanche, les images radar sont accessibles rapidement quelles que soient les conditions climatiques et peuvent même être acquises de nuit. Ainsi, détecter des changements entre des images optiques et radar est un problème d'un grand intérêt en télédétection.L'intérêt de cette thèse est d'étudier des méthodes statistiques de détention de changements adaptés aux images issues de capteurs hétérogènes.Chapitre 1 rappelle ce qu'on entend par une image de télédétection et résume rapidement quelques méthodes de détection de changements disponibles dans la littérature. Les motivations à développer des méthodes de détection de changements adaptées aux images hétérogènes et les difficultés associiées sont présentés.Chapitre 2 étudie les propriétés statistiques des images en l'absence de changements. Un modèle de mélange de lois adapté aux ces images est introduit. La performance des méthodes classiques de détection de changements est également étudiée. Dans plusieurs cas, ce modèle permet d'expliquer certains défauts de certaines méthodes de la literature.Chapitre 3 étudie les propriétés des paramètres du modèle introduit au chapitre 2 en faisant l'hypothèse qu'ils appartiennent à une variété en l'absence de changements. Cette hypothèse est utilisée pour définir une mesure de similarité qui permet d'éviter les défauts des approches statistiques classiques. Une méthode permettant d'estimer cette mesure de similarité est présentée. Enfin, la stratégie de détection de changements basée sur cette mesure est validée à l'aide d'images synthétiques.Chapitre 4 étudie un algorithme Bayésien non-paramétrique (BNP) qui permet d'améliorer l'estimation de la variété introduite au chapitre 3, qui est basé sur un processus de restaurant Chinois (CRP) et un champs de Markov qui exploite la corrélation spatiale entre des pixels voisins de l'image. Une nouvelle loi a priori de Jeffrey pour le paramètre de concentration de ce CRP est définit. L'estimation des paramètres de ce nouveau modèle est effectuée à l'aide d'un échantillonneur de Gibbs de type "collapsed Gibbs sampler". La stratégie de détection de changement issue de ce modèle non-paramétrique est validée à l'aide d'images synthétiques.Le dernier chapitre est destiné à la validation des algorithmes de détection de changements développés sur des jeux d'images réelles montrant des résultats encourageant pour tous les cas d'étude. Le modèle BNP permet d'obtenir de meilleurs performances que le modèle paramétrique, mais ceci se fait au prix d'une complexité calculatoire plus importante
Nouvelles méthodes pour l'apprentissage non-supervisé en grandes dimensions. by Hafiz Tiomoko ali( )

1 edition published in 2018 in French and held by 1 WorldCat member library worldwide

Spurred by recent advances on the theoretical analysis of the performances of the data-driven machine learning algorithms, this thesis tackles the performance analysis and improvement of high dimensional data and graph clustering. Specifically, in the first bigger part of the thesis, using advanced tools from random matrix theory, the performance analysis of spectral methods on dense realistic graph models and on high dimensional kernel random matrices is performed through the study of the eigenvalues and eigenvectors of the similarity matrices characterizing those data. New improved methods are proposed and are shown to outperform state-of-the-art approaches. In a second part, a new algorithm is proposed for the detection of heterogeneous communities from multi-layer graphs using variational Bayes approaches to approximate the posterior distribution of the sought variables. The proposed methods are successfully applied to synthetic benchmarks as well as real-world datasets and are shown to outperform standard approaches to clustering in those specific contexts
Variabilité spectrale en démélange de données hyperspectrales : Stratégies multi-échelles, tensorielles et basées sur des réseaux neuronaux by Ricardo Augusto Borsoi( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

The spectral signatures of the materials contained in hyperspectral images, also called endmembers (EMs), can be significantly affected by variations in atmospheric, illumination or environmental conditions typically occurring within an image. Traditional spectral unmixing (SU) algorithms neglect the spectral variability of the endmembers, what propagates significant mismodeling errors throughout the whole unmixing process and compromises the quality of the estimated abundances. Therefore, significant effort have been recently dedicated to mitigate the effects of spectral variability in SU. However, many challenges still remain in how to best explore a priori information about the problem in order to improve the quality, the robustness and the efficiency of SU algorithms that account for spectral variability. In this thesis, new strategies are developed to address spectral variability in SU. First, an (over)-segmentation-based multiscale regularization strategy is proposed to explore spatial information about the abundance maps more effectively. New algorithms are then proposed for both semi-supervised and blind SU, leading to improved abundance reconstruction performance at a small computational complexity. Afterwards, three new models are proposed to represent spectral variability of the EMs in SU, using parametric, tensor, and neural network-based representations for EM spectra at each image pixel. The parametric model introduces pixel-dependent scaling factors over a reference EM matrix to model arbitrary spectral variability, while the tensor-based representation allows one to exploit the high-dimensional nature of the data by means of its underlying low-rank structure. Generative neural networks (such as variational autoencoders or generative adversarial networks) finally allow one to model the low-dimensional manifold of the spectral signatures of the materials more effectively. The proposed models are used to devise three new blind SU algorithms, and to perform data augmentation in library-based SU. Finally, we provide a brief overview of work which extends the proposed strategies to new problems in SU and in hyperspectral image analysis. This includes the use of the multiscale abundance regularization in nonlinear SU, modeling spectral variability and accounting for sudden changes when performing SU and change detection of multitemporal hyperspectral images, and also accounting for spectral variability and changes in the multimodal (i.e., hyperspectral and multispectral) image fusion problem
Estimation structurée de la covariance du bruit en détection adaptative by Guilhem Pailloux( )

1 edition published in 2010 in French and held by 1 WorldCat member library worldwide

This thesis deals with Radar detection in Gaussian and non-Gaussian noise. In this context, the clutter covariance matrix commonly exhibits a particular persymmetric structure. This structure is exploited into a particular matrix transformation to provide two new covariance matrices estimates for Gaussian and non-gaussian noise. We use then this particular linear transformation in order to develop and to study the statistical property of the two new detectors based on these estimates for both Gaussian and non-Gaussian environments. The improvement in terms of detection performances of these new detectors is shown through a lots of simulations and validation on operational data, for both Gaussian and non- Gaussian noise. Moreover this exploitation is extended to space-time adaptive processing and reduced rank technical. All the results confirm then the high interest of taking into account this particular structure in radar detection process compared to classical detection schemes. The case of Toeplitz matrices is also studied. The Toeplitz matrices are a particular class of structured matrices obtain with space-time processing which theoretically allows to improve the performance of detectors based on this matrix assumption. In this context, some preliminary results are presented in order to conclude this thesis
Théorie des Matrices Aléatoires pour l'Imagerie Hyperspectrale by Eugénie Terreaux( )

1 edition published in 2018 in French and held by 1 WorldCat member library worldwide

La finesse de la résolution spectrale et spatiale des images hyperspectrales en font des données de très grande dimension. C'est également le cas d'autres types de données, où leur taille tend à augmenter pour de plus en plus d'applications. La complexité des données provenant de l'hétérogénéité spectrale et spatiale, de la non gaussianité du bruit et des processus physiques sous-jacents, renforcent la richesse des informations présentes sur une image hyperspectrale. Exploiter ces informations demande alors des outils statistiques adaptés aux grandes données mais aussi à leur nature non gaussienne. Des méthodes reposant sur la théorie des matrices aléatoires, théorie adaptée aux données de grande dimension, et reposant sur la robustesse, adaptée aux données non gaussiennes, sont ainsi proposées dans cette thèse, pour des applications à l'imagerie hyperspectrale. Cette thèse propose d'améliorer deux aspects du traitement des images hyperspectrales : l'estimation du nombre d'endmembers ou de l'ordre du modèle et le problème du démélange spectral. En ce qui concerne l'estimation du nombre d'endmembers, trois nouveaux algorithmes adaptés au modèle choisi sont proposés, le dernier présentant de meilleures performances que les deux autres, en raison de sa plus grande robustesse.Une application au domaine de la finance est également proposée. Pour le démélange spectral, trois méthodes sont proposées, qui tiennent comptent des diff érentes particularités possibles des images hyperspectrales. Cette thèse a permis de montrer que la théorie des matrices aléatoires présente un grand intérêt pour le traitement des images hyperspectrales. Les méthodes développées peuvent également s'appliquer à d'autres domaines nécessitant le traitement de données de grandes dimensions
Signal processing for MIMO radars : detection under gaussian and non-gaussian environments and application to STAP. by Chin yuan Chong( )

1 edition published in 2011 in English and held by 1 WorldCat member library worldwide

Un radar Multiple-Input Multiple-Output (MIMO) est celui où les émetteurs envoient des formes d'ondes différentes (orthogonales ou partiellement corrélées) qui peuvent être séparées à la réception. En outre, les émetteurs et récepteurs peuvent être colocalisés ou largement séparés. La première partie de la thèse porte sur la détection dans des environnements gaussiens et non gaussiens en utilisant un radar MIMO, qui contient plusieurs sous-réseaux largement séparés avec un ou plusieurs éléments chacun. Deux situations différentes sont considérées. Premièrement, nous considérons que les interférences sont gaussiennes, mais une corrélation entre les sous-réseaux peut survenir en raison d'un espacement insuffisant et de l'orthogonalité imparfaite des formes d'ondes. Deuxièmement, nous considérons que les interférences sont non gaussiennes, une situation qui se présente quand il y a du fouillis de sol ou de mer et lorsque la résolution est très élevée. La deuxième partie est dédiée à l'utilisation de techniques MIMO pour le Space-Time Adaptive Processing (STAP). La configuration MIMO cohérente est étudiée en changeant la distribution et l'espacement des éléments d'antenne pour améliorer les performances de détection et d'estimation. En outre, une étude préliminaire est également présentée sur l'utilisation de la diversité spatiale pour rendre le radar plus robuste aux fluctuations de la RCS et à la variation de la vitesse de la cible par rapport à l'angle d'incidence du signal émis et reçu
Estimation distribuée respectueuse de la consommation d'énergie et de la confidentialité sur les réseaux adaptatifs by Ibrahim El Khalil Harrane( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Distributed estimation over adaptive networks takes advantage of the interconnections between agents to perform parameter estimation from streaming data. Compared to their centralized counterparts, distributed strategies are resilient to links and agents failures, and are scalable. However, such advantages do not come without a cost. Distributed strategies require reliable communication between neighbouring agents, which is a substantial burden especially for agents with a limited energy budget. In addition to this high communication load, as for any distributed algorithm, there may be some privacy concerns particularly for applications involving sensitive data. The aim of this dissertation is to address these two challenges. To reduce the communication load and consequently the energy consumption, we propose two strategies. The first one involves compression while the second one aims at limiting the communication cost by sparsifying the network. For the first approach, we propose a compressed version of the diffusion LMS where only some random entries of the shared vectors are transmitted. We theoretically analyse the algorithm behaviour in the mean and mean square sense. We also perform numerical simulations that confirm the theoretical model accuracy. As energy consumption is the main focus, we carry out simulations with a realistic scenario where agents turn on and off to save energy. The proposed algorithm outperforms its state of the art counterparts. The second approach takes advantage of the multitask setting to reduce the communication cost. In a multitask setting it is beneficial to only communicate with agents estimating similar quantities. To do so, we consider a network with two types of agents: cluster agents estimating the network structure, and regular agents tasked with estimating their respective objective vectors. We theoretically analyse the algorithm behaviour under two scenarios: one where all agents are properly clustered, and a second one where some agents are asigned to wrong clusters. We perform an extensive numerical analysis to confirm the fitness of the theoretical models and to study the effect of the algorithm parameters on its convergence. To address the privacy concerns, we take inspiration from differentially private Algorithms to propose a privacy aware version of diffusion LMS. As diffusion strategies relies heavily on communication between agents, the data are in constant jeopardy. To avoid such risk and benefit from the information exchange, we propose to use Wishart matrices to corrupt the transmitted data. Doing so, we prevent data reconstruction by adversary neighbours as well as external threats. We theoretically and numerically analyse the algorithm behaviour. We also study the effect of the rank of the Wishart matrices on the convergence speed and privacy preservation
Détection et filtrage rang faible pour le traitement d'antenne utilisant la théorie des matrices aléatoires en grandes dimensions by Alice Combernoux( )

1 edition published in 2016 in French and held by 1 WorldCat member library worldwide

Partant du constat que dans plus en plus d'applications, la taille des données à traiter augmente, il semble pertinent d'utiliser des outils appropriés tels que la théorie des matrices aléatoires dans le régime en grandes dimensions. Plus particulièrement, dans les applications de traitement d'antenne et radar spécifiques STAP et MIMO-STAP, nous nous sommes intéressés au traitement d'un signal d'intérêt corrompu par un bruit additif composé d'une partie dite rang faible et d'un bruit blanc gaussien. Ainsi l'objet de cette thèse est d'étudier dans le régime en grandes dimensions la détection et le filtrage dit rang faible (fonction de projecteurs) pour le traitement d'antenne en utilisant la théorie des matrices aléatoires.La thèse propose alors trois contributions principales, dans le cadre de l'analyse asymptotique de fonctionnelles de projecteurs. Ainsi, premièrement, le régime en grandes dimensions permet ici de déterminer une approximation/prédiction des performances théoriques non asymptotiques, plus précise que ce qui existe actuellement en régime asymptotique classique (le nombre de données d'estimation tends vers l'infini à taille des données fixe). Deuxièmement, deux nouveaux filtres et deux nouveaux détecteurs adaptatifs rang faible ont été proposés et il a été montré qu'ils présentaient de meilleures performances en fonction des paramètres du système en terme de perte en RSB, probabilité de fausse alarme et probabilité de détection. Enfin, les résultats ont été validés sur une application de brouillage, puis appliqués aux traitements radar STAP et MIMO-STAP sparse. L'étude a alors mis en évidence une différence notable avec l'application de brouillage liée aux modèles de matrice de covariance traités dans cette thèse
Contributions to SAR Image Time Series Analysis by Ammar Mian( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Remote sensing data from Synthetic Aperture Radar (SAR) sensors offer a unique opportunity to record, to analyze, and to predict the evolution of the Earth. In the last decade, numerous satellite remote sensing missions have been launched (Sentinel-1, UAVSAR, TerraSAR X, etc.). This resulted in a dramatic improvement in the Earth image acquisition capability and accessibility. The growing number of observation systems allows now to build high temporal/spatial-resolution Earth surface images data-sets. This new scenario significantly raises the interest in time-series processing to monitor changes occurring over large areas. However, developing new algorithms to process such a huge volume of data represents a current challenge. In this context, the present thesis aims at developing methodologies for change detection in high-resolution SAR image time series.These series raise two notable challenges that have to be overcome:On the one hand, standard statistical methods rely on multivariate data to infer a result which is often superior to a monovariate approach. Such multivariate data is however not always available when it concerns SAR images. To tackle this issue, new methodologies based on wavelet decomposition theory have been developed to fetch information based on the physical behavior of the scatterers present in the scene.On the other hand, the improvement in resolution obtained from the latest generation of sensors comes with an increased heterogeneity of the data obtained. For this setup, the standard Gaussian assumption used to develop classic change detection methodologies is no longer valid. As a consequence, new robust methodologies have been developed considering the family of elliptical distributions which have been shown to better fit the observed data.The association of both aspects has shown promising results in change detection applications
Une approche basée sur la géométrie Riemannienne pour l'estimation en ligne des distributions elliptiques by Jialun Zhou( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

Durant les dix dernières années, les méthodes basées sur la géométrie Riemannienne et la géométrie de l'information ont eu un impact important sur le traitement des signaux et des images, la science des données, et l'intelligence artificielle.L'objectif de cette thèse est de proposer de nouveaux algorithmes, basés sur la géométrie Riemannienne et la géométrie de l'information, pour l'estimation en ligne des lois dites à contours elliptiques, et de leurs mélanges.En général, l'estimation en ligne est réalisée à travers la minimisation d'une divergence statistique, la divergence de Kullback-Leibler, grâce à l'application d'une méthode de gradient Riemannien stochastique. Afin d'implémenter cette méthode, l'espace des paramètres de la famille de lois elliptiques (ou de mélanges de lois elliptiques) doit être équipé d'une métrique Riemannienne, de préférence la métrique d'information de Fisher.Malheureusement, pour les lois elliptiques, cette métrique est souvent inconnue, ou n'a pas d'expression analytique exploitable. Pour répondre à cette difficulté, nous avons introduit une alternative à la métrique d'information de Fisher, que nous avons appelée métrique d'information par composantes. En utilisant cette métrique, nous avons développé la méthode du gradient d'information par composantes.La méthode du gradient d'information par composantes est une méthode en ligne, avec un faible coût calculatoire, qui lui permet de prendre en compte les jeux de donnés massifs ou de grandes dimensions. De plus, cette méthode a deux variantes, une à pas d'optimisation décroissants, et l'autre à pas d'optimisation adaptatifs. Cette seconde variante permet d'éviter le choix manuel (habituellement très long et pénible) des pas d'optimisation, et d'atteindre une vitesse de convergence qui s'approche d'une vitesse exponentielle.Nous avons appliqué la méthode du gradient d'information par composantes à l'estimation de deux familles de lois elliptiques, les distributions Gaussiennes généralisées multivariées, et les lois de Student multivariées, ce qui nous a permis de mettre en évidence à la fois son faible coût calculatoire et sa vitesse de convergence optimale.Finalement, nous avons réalisé des applications concrètes, en traitement des images et vision par ordinateur, à la conversion de couleurs et à la classification de textures. Pour les images de haute résolution (avec plus de 2 millions de pixels), notre méthode du gradient d'information par composantes n'a besoin que d'une centaine de secondes pour effectuer le travail, avec des résultats nettement meilleurs qu'avec les autres méthodes
Statistiques des estimateurs robustes pour le traitement du signal et des images by Gordana Draskovic( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Un des défis majeurs en traitement radar consiste à identifier une cible cachée dans un environnement bruité. Pour ce faire, il est nécessaire de caractériser finement les propriétés statistiques du bruit, en particulier sa matrice de covariance. Sous l'hypothèse gaussienne, cette dernière est estimée par la matrice de covariance empirique (SCM) dont le comportement est parfaitement connu. Cependant, dans de nombreuses applications actuelles, tels les systèmes radar modernes à haute résolution par exemple, les données collectées sont de nature hétérogène, et ne peuvent être proprement décrites par un processus gaussien. Pour pallier ce problème, les distributions symétriques elliptiques complexes, caractérisant mieux ces phénomènes physiques complexes, ont été proposées. Dans ce cas, les performances de la SCM sont très médiocres et les M-estimateurs apparaissent comme une bonne alternative, principalement en raison de leur flexibilité par rapport au modèle statistique et de leur robustesse aux données aberrantes et/ou aux données manquantes. Cependant, le comportement de tels estimateurs reste encore mal compris. Dans ce contexte, les contributions de cette thèse sont multiples.D'abord, une approche originale pour analyser les propriétés statistiques des M-estimateurs est proposée, révélant que les propriétés statistiques des M-estimateurs peuvent être bien approximées par une distribution de Wishart. Grâce à ces résultats, nous analysons la décomposition de la matrice de covariance en éléments propres. Selon l'application, la matrice de covariance peut posséder une structure particulière impliquant valeurs propres multiples contenant les informations d'intérêt. Nous abordons ainsi divers scénarios rencontrés dans la pratique et proposons des procédures robustes basées sur des M-estimateurs. De plus, nous étudions le problème de la détection robuste du signal. Les propriétés statistiques de diverses statistiques de détection adaptative construites avec des M-estimateurs sont analysées. Enfin, la dernière partie de ces travaux est consacrée au traitement des images radar à synthèse d'ouverture polarimétriques (PolSAR). En imagerie PolSAR, un effet particulier appelé speckle dégrade considérablement la qualité de l'image. Dans cette thèse, nous montrons comment les nouvelles propriétés statistiques des M-estimateurs peuvent être exploitées afin de construire de nouvelles techniques pour la réduction du speckle
Fusion de données AIS et radar pour la surveillance maritime by Fábio Manzoni Vieira( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

In the maritime surveillance domain, cooperative identification and positioning systems such as AIS (Automatic Identification System) are often coupled with non-cooperative systems for ship observation such as Synthetic Aperture Radar (SAR). In this context, the fusion of AIS and Radar data can improve the detection of certain vessels and possible identify some maritime surveillance scenarios. The first chapter introduces both AIS and Radar systems, details the data structure as well as the related signal processing. The second chapter presents the potential contribution of the joint use of raw Radar and AIS data for the detection of vessels using a generalized likelihood ratio test (GLRT). Although the performance is encouraging, in practice the implementation in real-time of the detector seems complicated. As alternative, the third chapter presents a suboptimal detection method that explores Radar raw data and a positioning map of vessels obtained from the AIS system. Differently from chapter two, in addition to the simultaneous detection by both AIS and radar, the cases where only one of the systems detects an object can now be distinguished. The problem is formalized by two successive binary hypotheses test. The results suggests that the proposed detector is less sensitive to the proximity and density of ships than a conventional radar detector. The fourth chapter presents the simulator developed to test the algorithms on different surveillance scenarios, namely a civilian ship piracy scenario, an illegal cargo transhipment and a scenario of navigation in a dense environment
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.97 (from 0.93 for Détection ... to 0.99 for Systèmes ...)

Alternative Names
Frederic Pascal wetenschapper

Languages