WorldCat Identities

Pouet, Christophe

Overview
Works: 7 works in 10 publications in 2 languages and 10 library holdings
Roles: Author, Other, Opponent
Publication Timeline
.
Most widely held works by Christophe Pouet
Tests minimax non-paramétriques : hypothèse nulle composite et constantes exactes by Christophe Pouet( Book )

2 editions published in 2000 in French and held by 4 WorldCat member libraries worldwide

Adaptive minimax testing in the discrete regression scheme by Ghislaine Gayraud( Book )

3 editions published in 2003 in English and held by 1 WorldCat member library worldwide

Sur l'estimation adaptative d'une densité multivariée sous l'hypothèse de la structure d'indépendance by Gilles Rebelles( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

Les résultats obtenus dans cette thèse concernent l'estimation non paramétrique de densités de probabilité. Principalement, nous nous intéressons à estimer une densité de probabilité multidimensionnelle de régularité anisotrope et inhomogène. Nous proposons des procédures d'estimation qui sont adaptatives, non seulement par rapport aux paramètres de régularité, mais aussi par rapport à la structure d'indépendance de la densité de probabilité estimée. Cela nous permet de réduire l'influence de la dimension du domaine d'observation sur la qualité d'estimation et de faire en sorte que cette dernière soit la meilleure possible. Pour analyser la performance de nos méthodes nous adoptons le point de vue minimax et nous généralisons un critère d'optimalité pour l'estimation adaptative. L'utilisation du critère que nous proposons s'impose lorsque le paramètre d'intérêt est estimé en un point fixé car, dans ce cas, il y a un "prix à payer" pour l'adaptation par rapport à la régularité et à la structure d'indépendance. Cela n'est plus vrai lorsque l'estimation est globale. Dans le modèle de densité (avec des observations directes) nous considérons le problème de l'estimation ponctuelle et celui de l'estimation en norme Lₚ,p∈[1,∞). Dans le modèle de déconvolution (avec des observations bruitées) nous étudions le problème de l'estimation en norme Lₚ-risk (p∈[1,∞]), dans le cas où la fonction caractéristique du bruit décroît polynomialement à l'infini. Chaque estimateur que nous proposons est obtenu par une procédure de sélection aléatoire dans une famille d'estimateurs à noyau
Warping and sampling approaches to non-stationary gaussian process modelling. by Sebastien Marmin( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

This work deals with approximating expensive-to-evaluatefunctions exhibiting heterogeneous sensitivity to input perturbationsdepending on regions of the input space. Motivated by real test caseswith high computational costs coming mainly from IRSN nuclear safetystudies, we resort to surrogate models of the numerical simulatorsusing Gaussian processes (GP). GP models are popular for sequentialevaluation strategies in design of experiments under limited evaluationbudget. While it is common to make stationarity assumptions for theprocesses and use sampling criteria based on its variance forexploration, we tackle the problem of accommodating the GP-based designto the heterogeneous behaviour of the function from two angles: firstvia a novel class of covariances (WaMI-GP) that simultaneouslygeneralises existing kernels of Multiple Index and of tensorised warpedGP and second, by introducing derivative-based sampling criteriadedicated to the exploration of high variation regions. The novel GPclass is investigated both through mathematical analysis and numericalexperiments, and it is shown that it allows encoding muchexpressiveness while remaining with a moderate number of parameters tobe inferred. Moreover, exploiting methodological links between waveletsanalysis and non-stationary GP modelling, we propose a new non-stationary GP (Wav-GP) with non-parametric warping. The key point is aniterated estimation of the so-called local scale that approximates thederivative of the warping. Wav-GP is applied to two mechanical casestudies highlighting promising prediction performance. Independently ofnon-stationarity assumptions, we conduct derivations for new variance-based criteria relying on the norm of the GP gradient field. Criteriaand models are compared with state-of-the-art methods on engineeringtest cases. It is found on these applications that some of the proposedgradient-based criteria outperform usual variance-based criteria in thecase of a stationary GP model, but that it is even better to usevariance-based criteria with WaMI-GP, which dominates mostly for smalldesigns and in sequential set up. Other contributions in samplingcriteria address the problem of global optimisation, focusing on theexpected improvement criterion and its multipoint version for parallelbatch evaluations. Closed form formulas and fast approximations areestablished for a generalised version of the criterion and its gradient. Numerical experiments illustrate that the proposed approachesenable substantial computational savings
Méthodes stochastiques de modélisation de données : application à la reconstruction de données non régulières. by Leticia Buslig( )

1 edition published in 2014 in French and held by 1 WorldCat member library worldwide

Développement de nouvelles méthodes pour l'évaluation non-destructive des infrastructures ferroviaires : Utilisation de traitements statistiques des signaux by Quentin Mayolle( )

1 edition published in 2021 in English and held by 1 WorldCat member library worldwide

La maintenance des infrastructures ferroviaires doit désormais anticiper la dégradation du matériel pour éviter tout incident dommageable. Détecter un défaut sur le rail à son stade le plus précoce est nécessaire pour garantir une maintenance efficace et optimale. Les Electro-Magnetic Acoustic Transducers (EMAT)sont une technique d'inspection ultrasonore sans-contact pour l'évaluation non destructive de l'état des matériaux ferromagnétiques. Leur application aux rails permet l'identification des défauts de surface lors d'une prise de mesure immobile sur le rail. Néanmoins, l'exploitation du réseau poussant à la diminution du temps d'inspection, les outils de mesures doivent être embarqués dans des structures motorisées. L'inspection mobile cause une dégradation des signaux ultrasonores. Cette thèse propose des outils et méthodologies du traitement statistique du signal pour améliorer la détection et la caractérisation des défauts de surface du rail, à partir de signaux ultrasonores obtenues par des capteurs mobiles. Nous proposons des indicateurs statistiques sur les signaux EMAT permettant une identification des défauts du rail. Des représentations des mesures dans des espaces d'états apportent des informations sur l'évolution des signaux durant la mesure mobile, grâce à des algorithmes de filtrage, qui fournissent des mesures d'incertitudes sur les estimations réalisées. Nous apportons une méthodologie permettant de régler automatiquement les paramètres de ces algorithmes de filtrage pour s'adapter aux données reçues. Elle repose sur des modélisations bayésiennes,nécessitant peu de connaissances sur les algorithmes de la part d'un opérateur humain. Enfin, nous nous sommes intéressés au cas plus général des signaux vibratoires d'accélération. L'identification de l'évolution des caractéristiques au sein de ces signaux permet une meilleure compréhension des phénomènes physiques régissant la mesure. Des procédures bayésiennes intègrent l'incertitude sur les connaissances a priori du problème, et les résultats fournis par les méthodes d'estimations
Analyse des données pour la surveillance de la voie ferrée : L'intelligence artificielle au service du ferroviaire by Alain Rivero( )

1 edition published in 2021 in French and held by 1 WorldCat member library worldwide

La tendance actuelle en matière de capteurs et d'équipements industriels déployés sur le réseau ferré nous amène à gérer des systèmes de plus en plus complexes qui obligent les agents à travailler dans un environnement incertain. Dans le même temps, le domaine du transport ferroviaire devient de plus en plus concurrentiel, ce qui contraint les gestionnaires d'infrastructures à une recherche permanente d'amélioration, d'optimisation et de productivité. Parallèlement, l'utilisation des techniques de surveillance classiques est de plus en plus coûteuse, tout en offrant des performances de moins en moins satisfaisantes. Les fonctions de surveillance du réseau sont souvent opérées hors ligne, empêchant ainsi le traitement en temps réel de l'information. L'intelligence artificielle offre des outils totalement dissociés de la structure de l'infrastructure, ne nécessitant pas la modélisation préalable de cette dernière et permettant un suivi en temps réel de son évolution. Cette nouvelle approche de la maintenance s'avère par conséquent évolutive et plus en adéquation avec les contraintes économiques auxquelles est soumise notre activité. Dans ce cadre, nous avons étudié une nouvelle architecture combinant l'emploi de plusieurs couches de réseaux neuronaux profonds et un modèle de fusion. Cette solution permet de garantir un taux de disponibilité optimale du réseau et de préserver l'infrastructure existante par une maintenance au juste à temps et au juste nécessaire. Pour le système destiné aux trains commerciaux, nous avons abordé les problématiques de programmation distribuée telles que la co-allocation des ressources. Une étude économique complète cette étude
 
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.00 (from 0.00 for Tests mini ... to 0.00 for Tests mini ...)

Languages