WorldCat Identities

Bancaud, Aurélien (19..-....).

Overview
Works: 16 works in 26 publications in 2 languages and 28 library holdings
Roles: Thesis advisor, Opponent, Author, Other
Publication Timeline
.
Most widely held works by Aurélien Bancaud
Dynamique et structure de fibres de chromatine individuelles by Aurélien Bancaud( Book )

2 editions published in 2004 in French and held by 3 WorldCat member libraries worldwide

µLAS: Sizing of expanded trinucleotide repeats with femtomolar sensitivity in less than 5 minutes by Rémi Malbec( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Développement d'outils analytiques par et pour la microfluidique : caractérisation d'écoulements d'objets dissous et intégration d'un système de séparation sans matrice de biomolécules by Hubert Ranchon( Book )

2 editions published in 2013 in French and held by 2 WorldCat member libraries worldwide

Transport in solution at the nanoscale is of crucial interest for biology or energy conversion. The dynamics of single objects flowing in a liquid, and fluid transport properties are intimately related. Dynamics is mostly associated to the behavior of single object, whereas transport refers to the massive or global dynamics of a set of individuals. The gap in between these two views is very thin, as a global transport can be understood under a scale transformation of the behavior of one single component. This statement constitutes the basis of modern condensed matter physics. In this work we considered the behavior of individual diluted objects transported in solution from two vantages. First the dynamics of single "perfect" objects were investigated toward the characterization of micro-environments. Then, in a second time, we investigated the dynamics of single objects under-controlled environment aiming at elucidating the physical laws describing their behavior. We developed a new method for characterizing sub-micron confined flows. We derived a theoretical model based on nanospheres velocity probability density. This model was validated using in-house Brownian dynamics simulations of particles flowing in laminar Poiseuille flows. These numerical and analytical approaches were confronted to experiments of single nanospheres conveyed in pressure-driven flows in nanofluidic devices. We detected giant lift force, leading to cross-streamline migration away from the wall even at vanishing Reynolds number. These forces are not described in the literature, leading us to characterize their physical properties. We then switched to the study of dynamical properties of DNA molecules in solution in confined environment under an hybrid actuation involving hydrodynamics and electrokinetics. The use of a non-newtonian buffer solution led to observe a non-linear combination of the actuations. Experimental strategies were then developed to map the inhomogeneous transverse probability of density of molecules inside the channels. This specific phenomenon allowed for the design of a new way of resolving biomolecules by size in free solution. Overall, this experimental work at the nexus of fluid physics, micro-fabrication engineering and statistical physics, allowed us for the design of a new nano-velocimetry, and other experimental methods which help us decipher transverse migration of diluted solid and flexible objects in solution. Furthermore, hybrid mode actuation of DNA in non-Newtonian fluids led us to design of new way of separating biomolecules by size. We think that this work is a leap forward for an easy characterization of nanoflows and particle transports at the nanoscale
Intégration et optimisation de procédés de séparation d'ADN by Jeffrey Teillet-Deborde( Book )

2 editions published in 2020 in French and held by 2 WorldCat member libraries worldwide

This manuscript describes and discusses the integration of instrumentation hardware for the µLAS system, for the optimization of the analysis and separation of DNA molecules. First, we will discuss separation techniques, their approaches and strategies. And we will try to answer this question which is asked when a species migrates: how to characterize the competition between forced advection and natural diffusion? To optimize and improve the performance of the various separation technologies thus mentioned, it is necessary to introduce the issues inherent in each. Because there is indeed a wide range of actuation means that cause molecules to migrate in multiple ways: by hydrodynamics, by electrophoresis or even techniques combining the two approaches. Then we will introduce the µLAS technology and in what technological context it is placed. We will present the physical principles that govern the different stages of the technology's operation (concentration and separation). We will then approach the developments carried out during this thesis work on a temporal separation mode which involves a new chip model. Finally, we will show the development work, both in technological manufacturing and also in software intelligence, to set up slope engravings in silicon and thus enrich the µLAS system. Then we will introduce the instrumentation work carried out throughout these 3 years on a dedicated experimental bench. This chapter will be organized to introduce an uninformed reader to the basics and issues inherent in programming, instrumentation and automation of systems controlled by LabVIEW. We will use these bases to present the platform thus developed to pilot µLAS experiments. Finally, such a system needs to be characterized because it involves many players: computer and mechanical tools. Finally, we will present the separation results obtained using the fully integrated and automated µLAS platform. The analysis of these results raised questions and at the same time a study of the dynamic dispersion of DNA bands. We will end with some prospects for improvement, mentioned during the manuscript
Développement de procédés fluidiques pour la manipulation de micro et nano objets et de biomolécules by Qihao Hé( Book )

2 editions published in 2012 in French and held by 2 WorldCat member libraries worldwide

The applications of microsystems has steadily widened over the last fifteen years in particular to communication or biotechnology. To increase the functionality of microsystems, the use of nano-objects seems to be an inevitable path, but often exposed to integrate them into a functional architecture. To solve these problems of integration, the use of directed assembly phenomena, ie the physical phenomena to manipulate nano-objects collectively seems very promising. In this context, the objective of our thesis was to develop tools capable of realizing innovative fluid handling operations or conformational space of nano-objects or molecules. This is a multidisciplinary research at the frontier between micro and nano-fabrication, micro-and nano-fluidics, molecular biology, imaging of individual molecules, and biophysics. The thesis consists of two relatively independent projects: a study of nanofluidics for the conformational control of chromosomes from living cells, and work on a microfluidic phenomenon of spontaneous assembly on hydrophilic gel. At first, we describe a method for producing structured hydrogels, and we show that these hydrogels are an effective medium for spatially organize nano-objects. This organization is spontaneous, and it occurs during the drying liquid. We wanted to understand the mechanisms of fluid during drying using fluorescent tracers.We identify several phenomena explaining the phenomena of spatial organization of particles, and propose applications for this innovative process. Thanks to nanofluidic devices that we have made, we conduct experiments manipulating individual DNA molecules in a confined environment. We analyze the behavior of DNA - its extension, its mobility, the effect of salinity, the role of the material in which the nanochannels are fabricated - using two operating modes, namely electrophoresis and hydrodynamic , and we show, for the first time, the interest of hydrodynamics for DNA manipulation in nanostructures. Finally, we propose some applications for this method of manipulating DNA innovative
Technologie µLAS pour l'analyse et la purification d'ADN de haut poids moléculaire by Nicolas Milon( Book )

2 editions published in 2019 in French and held by 2 WorldCat member libraries worldwide

Les techniques de séquençage ont connu un extraordinaire développement depuis plus de 40 ans et ont permis une véritable révolution dans le domaine de l'analyse biologique avec l'entrée dans l'ère de la génomique. Le développement de nouvelles méthodes de séquençage est néanmoins associé à des contraintes sur la préparation et le contrôle qualité des échantillons d'ADN. La 3ème génération de séquenceurs nécessite notamment l'utilisation de fragments d'ADN de très grande taille, supérieurs à 50000 paires de bases, qui sont complexes à préparer et à caractériser avec les techniques actuelles. Dans la perspective d'accélérer et d'améliorer ces procédures de préparation d'échantillons, nous avons développé un instrument basé sur la technologie µLAS permettant la concentration et la séparation de grands fragments d'ADN. Nous avons en particulier développé une méthode permettant la concentration, l'isolation et le séquençage de régions génomiques ciblées en les découpant avec l'enzyme de restriction Cas9. Nous avons également développé un prototype pour la purification d'ADN de haut poids moléculaire dans un mélange complexe. Cet instrument permet d'effectuer une vanne de sélection d'ADN accordable pilotée par champ électrique. Adaptée à l'enrichissement sélectif d'ADN selon sa taille de 200 bp à 50 000 bp, notre méthode permet d'effectuer une purification de 20 ng d'ADN génomique de taille supérieure à 20 kb avec la technologie de 10X Genomics. Nous avons ainsi montré le potentiel de la technologie µLAS dans l'analyse et la purification d'ADN de haut poids moléculaire
Système microfluidique µLAS pour l'analyse de l'ADN résiduel : Application au diagnostic de la maladie de Huntington et à l'analyse de l'ADN circulant dans le sang by Rémi Malbec( Book )

2 editions published in 2018 in French and held by 2 WorldCat member libraries worldwide

La distribution en taille, la concentration, ou la séquence des fragments d'ADN circulants dans le sang sont autant d'informations analytiques exploitables pour les cliniciens ou les spécialistes de la biologie moléculaire. Par exemple, l'ADN circulant, issu de cellules tumorales, peut servir de biomarqueur pour la détection et le suivi du cancer. L'accès à ces informations est d'autant plus difficile que la quantité d'ADN dans l'échantillon est faible. En pratique, pour atteindre des niveaux de sensibilité adaptés, la détection et l'analyse de résidus d'ADN requiert le développement et l'association de technologies d'analyses de type électrophorèse aux techniques de la biologie moléculaire telles que l'amplification PCR. Dans la perspective de simplifier et d'accélérer les procédures, nous avons développé et optimisé µLAS, un système microfluidique pour la concentration, la séparation et la détection simultanée de l'ADN résiduel. µLAS a ensuite été appliqué au diagnostic de la maladie de Huntington et à l'analyse de l'ADN résiduel circulant dans le sang. La maladie de Huntington, causée par l'expansion de répétitions CAG/CTG sur le gène Huntingtin, est à l'origine d'une dégénérescence neurologique. Le diagnostic de la maladie de Huntington consiste à amplifier et à mesurer la taille de cette expansion. L'amplification de répétitions trinucléotidiques étant peu fiable, nous profitons de la sensibilité de µLAS, pour réduire le nombre de cycles d'amplification, et donc le temps d'analyse. Par ailleurs, pour l'analyse sensible de l'ADN circulant par µLAS, nous avons proposé une approche originale, visant à réduire les manipulations pré-analytiques de l'échantillon sanguin à une simple digestion enzymatique suivie d'une centrifugation. Enfin le développement d'une fonction de détection spécifique de séquence a été réalisée par concentration sélective d'une cible d'intérêt hybridée à une sonde. Cette approche qui utilise des sondes marquées en fluorescence en volume, a notamment fait l'objet d'un brevet
Développement de nouvelles technologies pour le suivi en temps réel du comportement des chromosomes by Houssam Hajjoul( Book )

2 editions published in 2010 in French and held by 2 WorldCat member libraries worldwide

L'organisation à grande échelle des chromosomes à l'intérieur du noyau des cellules est complexe et reste encore mal comprise. Durant ma thèse, nous avons exploité les ressources technologiques du LAAS pour développer et optimiser une nouvelle méthode de visualisation en 3D rapide - à l'échelle de la dizaine de millisecondes - avec une résolution spatiale de ~20 nanomètres. Cette méthode est fondée sur la fabrication de micromiroirs en forme de V par gravure humide du silicium, et sur l'analyse d'images avec les techniques de stéréovision qui permettent de recombiner des vues collectées sous différents angles dans un environnement 3D. Ces micromiroirs ont ensuite été intégrés dans un laboratoire sur puce, et plusieurs versions de la technologie ont été proposées afin d'améliorer leurs propriétés. Nous avons démontré que cette technologie est adaptée pour le suivi des mouvements des chromosomes dans les cellules vivantes, que nous avons pu retracer avec les meilleures cadences de la littérature. Ces résultats nous ont ensuite permis d'explorer les mécanismes physiques à l'origine des fluctuations spatiales des chromosomes, et de montrer que les modèles de physique des polymères génériques peuvent être utilisés pour extraire des informations quantitatives décrivant l'organisation et la dynamique spatiale du génome
Développement de nouveaux outils algorithmiques et technologiques pour l'étude du mouvement des chromosomes dans la levure S. Cerevisiae by Julien Mathon( Book )

2 editions published in 2013 in French and held by 2 WorldCat member libraries worldwide

The development of genetic engineering and fluorescence microscopy of the yeast S. Cerevisiae has recently allowed to investigate the folding and the dynamics of chromosomes in living cells. Chromosome biophysics has now emerged as a new cross-disciplinary field of research, aiming to elucidate the function of chromosomes with physical models. Our goal was to set up original tools to monitor chromosome dynamics in living cells. This research involves the development of high speed live cell fluorescence microscopy assays, automated tracking and image analysis softwares, and analytical models of experimental measurements. We demonstrate the successfull optimization of our data acquisition process flow with novel hardware and software developments, and provide a new model of the dynamics chromosome in living Saccharomyces Cerevisiae
Développement de technologie µLAS pour la séparation des acides nucléiques by Bayan Chami( Book )

2 editions published in 2019 in English and held by 2 WorldCat member libraries worldwide

Nucleic acids size-separation is an important, routinely used process for diagnosis, forensic analysis, and sequencing. This process is regularly performed using slab gels in research laboratories and using capillary electrophoresis for high throughput analysis in forensic laboratories. In attempts to simplify, reduce the cost and speed up the analysis, microchip technologies, that perform the same function, have been developed, which offered reduced analysis time, sample consumption, cost, and labor in addition to portability, automation and multiplexing. Today, with the advancement of micro and nanofabrication technologies, tens of studies emerge every year on new microchip separation devices for nucleic acids, proteins, particles, cells, bio-vesicles etc. Using different physical principles, each of these devices could separate specific types of molecules or specific size ranges. Our work discusses the development of a microchip technology for the se! paration of nucleic acids; double stranded DNA molecules of different size ranges, single stranded DNA and RNA. The technology called "µLAS" has been created in 2016. It works on the principle of simultaneous fractionation and concentration of nucleic acids in a microfluidic device using opposing electro-hydrodynamic actuation in a viscoelastic polymer sieving matrix. The group had demonstrated the use of the technology for the fractionation of dsDNA over the range of 300-50000 bp, the application of the technology for the diagnosis of Huntington's disease, and the analysis of circulating DNA. Further developments have extended the separation range to 100's of Kbps using microchip and capillary formats. In the capillary format, the technology performs fast analysis of circulating DNA. In the framework of my PhD, I worked on the optimization of chip-based µLAS technology in order to extend the range of separation sizes to DNA molecules from 25 bp to 150 Kbp and to achieve the separation of RNA molecules. This optimization required modeling of size fractionation based on bidirectional electro-hydrodynamic actuation in viscoelastic flows, which accurately reproduces the experimental data. The study of the microchip geometry, different polymer matrix formulations and actuation parameters allows us to show that µLAS is at the forefront of the state of the art thanks to a positioning with respect to all microchip separation techniques
Développement de systèmes fluidiques dédiés à la manipulation d'ADN dans des réseaux de nanoplots : étude à l'échelle de la molécule unique et application à la séparation by Yannick Viero( Book )

2 editions published in 2011 in French and held by 2 WorldCat member libraries worldwide

In most cases, separation by size of DNA molecules, a crucial step for sequencing, is realized by gelelectrophoresis, unadapted to long molecule separation: it is consequently relevant to investigate alternativeseparation techniques. We have used an alternative fabrication technology, Phase Shift Lithography, tofabricate obstacle matrices which sizes range from 80 to 500 nm, with cylindrical or ellipsoidal shapes.These matrices allowed us to investigate DNA-obstacle collision dynamics at the single molecule scale, bythe caracterisation of actuation effects (electrophoretic or hydrodynamic) and of the size and shape of theobstacles on these dynamics, involved in the separation by size process. We finaly showed the firsthydrodynamic separation of DNA fragments into nanopilar matrices
Développement d'outils analytiques par et pour la microfluidique caractérisation d'écoulements d'objets dissous et intégration d'un système de séparation sans matrice de biomolécules by Hubert Ranchon( )

1 edition published in 2014 in French and held by 1 WorldCat member library worldwide

Transport in solution at the nanoscale is of crucial interest for biology or energy conversion. The dynamics of single objects flowing in a liquid, and fluid transport properties are intimately related. Dynamics is mostly associated to the behavior of single object, whereas transport refers to the massive or global dynamics of a set of individuals. The gap in between these two views is very thin, as a global transport can be understood under a scale transformation of the behavior of one single component. This statement constitutes the basis of modern condensed matter physics. In this work we considered the behavior of individual diluted objects transported in solution from two vantages. First the dynamics of single "perfect" objects were investigated toward the characterization of micro-environments. Then, in a second time, we investigated the dynamics of single objects under-controlled environment aiming at elucidating the physical laws describing their behavior. We developed a new method for characterizing sub-micron confined flows. We derived a theoretical model based on nanospheres velocity probability density. This model was validated using in-house Brownian dynamics simulations of particles flowing in laminar Poiseuille flows. These numerical and analytical approaches were confronted to experiments of single nanospheres conveyed in pressure-driven flows in nanofluidic devices. We detected giant lift force, leading to cross-streamline migration away from the wall even at vanishing Reynolds number. These forces are not described in the literature, leading us to characterize their physical properties. We then switched to the study of dynamical properties of DNA molecules in solution in confined environment under an hybrid actuation involving hydrodynamics and electrokinetics. The use of a non-newtonian buffer solution led to observe a non-linear combination of the actuations. Experimental strategies were then developed to map the inhomogeneous transverse probability of density of molecules inside the channels. This specific phenomenon allowed for the design of a new way of resolving biomolecules by size in free solution. Overall, this experimental work at the nexus of fluid physics, micro-fabrication engineering and statistical physics, allowed us for the design of a new nano-velocimetry, and other experimental methods which help us decipher transverse migration of diluted solid and flexible objects in solution. Furthermore, hybrid mode actuation of DNA in non-Newtonian fluids led us to design of new way of separating biomolecules by size. We think that this work is a leap forward for an easy characterization of nanoflows and particle transports at the nanoscale
Exploration des nanotechnologies ADN pour l'auto-assemblage de nanoparticules d'aluminium et d'oxyde de cuivre : application à la synthèse de matériaux énergétiques by Théo Calais( )

1 edition published in 2017 in French and held by 1 WorldCat member library worldwide

Les nanotechnologies ADN utilisées pour l'auto-assemblage de nanoparticules d'or ou de métaux nobles ont connu un important développement au cours des vingt dernières années, permettant l'organisation de particules agencées en nano-cristaux, grâce à la spécificité biologique inégalable de deux brins complémentaires d'ADN. L'objectif de ces travaux de thèse est d'adapter ces nanotechnologies à l'assemblage de nanoparticules d'Al et de CuO en vue d'élaborer des matériaux composites énergétiques à haute performance, grâce à l'augmentation des surfaces en contact entre réducteur (Al) et oxydant (CuO) par la maîtrise de l'organisation spatiale des nanoparticules. Ainsi, la fonctionnalisation séparée des nanoparticules d'Al et de CuO dispersées en solution colloïdale par des monobrins d'ADN complémentaires assurée ici par l'utilisation du complexe biotineStreptavidine, doit amener, après mélange des deux solutions colloïdales, à l'agrégation des particules par l'hybridation des brins d'ADN greffés en surface. La stratégie de fonctionnalisation choisie ici est générique : la protéine « Streptavidine » est d'abord greffée sur la nanoparticule, puis le brin d'ADN possédant un groupe biotine à une de ses extrémités, se fixe sur la Streptavidine. Au-delà de l'organisation de la matière à l'échelle nanométrique, l'enjeu double de ces travaux tient dans l'établissement d'un protocole de fonctionnalisation fiable et reproductible, propre aux procédés de micro-électronique, pour envisager un report de ces matériaux sur puce, mais également dans le contrôle des performances énergétiques grâce à l'ADN. Nous nous sommes donc appliqués à élaborer ce protocole en caractérisant précisément chaque étape de fonctionnalisation : la stabilisation des colloïdes et la biofonctionnalisation des nanoparticules par la Streptavidine et l'ADN. De plus, l'interaction entre ADN et surfaces oxydées des particules a été étudiée de façon à identifier les interactions non-spécifiques à l'origine d'agrégations non maîtrisées et améliorer en conséquence la qualité de la fonctionnalisation. Nous avons ensuite étudié l'agrégation des particules fonctionalisées en fonction de nombreux paramètres expérimentaux telles que la longueur de la chaîne ADN, la séquence de l'oligonucléotide, ou encore la composition saline de la solution. A cause de l'existence d'interactions non-spécifiques mise en évidence, nous avons optimisés ces paramètres de façon à assurer une agrégation dirigée uniquement par l'hybridation des brins d'ADN. Les performances énergétiques des matériaux synthétisés ont enfin été caractérisées et nous avons démontré la possibilité de contrôler les performances énergétiques des nanobiocomposites synthétisant en maîtrisant leur microstructure grâce à l'ADN
Développement de nouveaux outils algorithmiques et technologiques pour l'étude du mouvement des chromosomes dans la levure S. Cerevisiae by Julien Mathon( )

1 edition published in 2014 in French and held by 1 WorldCat member library worldwide

The development of genetic engineering and fluorescence microscopy of the yeast S. Cerevisiae has recently allowed to investigate the folding and the dynamics of chromosomes in living cells. Chromosome biophysics has now emerged as a new cross-disciplinary field of research, aiming to elucidate the function of chromosomes with physical models. Our goal was to set up original tools to monitor chromosome dynamics in living cells. This research involves the development of high speed live cell fluorescence microscopy assays, automated tracking and image analysis softwares, and analytical models of experimental measurements. We demonstrate the successfull optimization of our data acquisition process flow with novel hardware and software developments, and provide a new model of the dynamics chromosome in living Saccharomyces Cerevisiae
Analyse de la dynamique des chromosomes chez Saccharomyces cerevisiae by Mathias Toulouze( )

1 edition published in 2018 in French and held by 1 WorldCat member library worldwide

The difficulty and the need to study the dynamic organization of the genome have pushed in recent years, experimenters and theorists to collaborate in the development of theoretical models of chromosomal architecture. Our work is a part of this effort. In collaboration with David Holcman and Assaf Amitaï (ENS Paris), we developped a new method of data analysis for the study of chromosomal sites tagged with fluorescent proteins. This new method allows us to extract from miscroscopy analysis a parameter named Kc characterizing constraints that restrict the mobility of the chromosomal locus. This new analysis was used to compare the mobility of different sites in the genome in order to understand how organization of the nucleus impacts chromatin mobility with the final aim of understanding the impact of this mobility on the regulation of DNA repair mechanisms. It was already proven recently (K. Bloom, 2013) that mobility of chromosomes is constrained by their anchoring to SPB by their centromeres, but little was known about the impact of telomeric sequences to nuclear membrane on chromosome mobility. Contrary to what is commonly accepted, our results showed that telomeres are not strongly anchored to the nuclear membrane. Within a cell population, it exists a high variability in telomere mobility, indeed most of the cells the telomeric interaction with the nuclear membrane is indeed strong enough to change the location of sub-telomeric loci but too weak to impact its mobility. Our results also showed that sub-telomeric loci have a higher mobility than loci located in the middle of the same chromosome arm. In mutant cells the loss of chromosom integrity upon the induction of a double-strand break leads to the apparition chromatin free extremities. Similarly to sub-telomerics loci, DSBs free extremities exhibit a higher mobility than DSBs in chromosome with a preserved integrity. In summary our study has shown that free ends of a chromatin fiber have a higher mobility than other monomers in the chain. This higher mobility is due to the higher level of freedom that chromatin extremities have. When DNA double strand break (DSB) is generated, the chromosome ends should become physically totally dissociated from one to another, making ensuing repair difficult. To overcome this dramatic event, the DNA damage response (DDR) takes in charge the implementation of a protein bridge that holds the two chromosome ends together and so preserve its integrity. In S. cerevisiae the MRX complex was already known for playing critical functions in early DSB extremities tethering. Several studies showed that a single DSB induces the formation of a ≈100 kb cohesin domain around the lesion. Our study suggests the late role played by cohesins in the emergence of an intra-chromosomal cohesive structure capable to maintain chromosomal integrity. The way of DSB extremities cohesion is established, is consistent with what is published on the recruitment of cohesins at DSBs. Our study also highlight the dynamical behavior of DSB extremities at the cell scale. Indeed once DSB extremities are separated, they alternate during several hours between a tethered and a separated state. We also analysed the impact of cohesins recruitment at DSBs at the chromosome scale. Our results establish a positive correlation between the level of cohesins loaded on the chromosome and the level of folding of the chromatin fiber. The analysis of the chronology of events leading to the preservation of chromosomal integrity upon DSB suggests that chromatin has an intrinsic property (not related to DNA damage response) preserving its integrity despite the apparition of DSBs. This property could potentially be due to short-range inter-nucleosomal interactions or to the presence of secondary structures formed by cohesines in the interphase genome. All these hypothesis should be further tested experimentally
Développement de nouvelles technologies pour le suivi en temps réel du comportement des chromosomes by Houssam Hajjoul( )

1 edition published in 2011 in French and held by 1 WorldCat member library worldwide

Understanding the details of how chromatin folds and the physical parameters governing chromatin behavior are among the most intriguing intellectual challenges in modern cell biology. Recent insights on chromosome conformation in yeast nuclei were gained owing to high-throughput molecular biology techniques, but the physical parameters governing chromosomes dynamics remain completely misunderstood. During my thesis, we have developed an original high speed 3D imaging technology for studying chromatin in living yeast, which allows accessing 3D dynamics with temporal resolutions of 15 ms and nanometer resolution by fluorescence microscopy. Our technology is based on the fabrication of V-shaped micromirrors by standard photolithography, and relies on stereovision methods for 3D reconstruction. These micromirrors were integrated into a lab on a chip, and several versions of the technology have been proposed to improve their properties. We demonstrated that this technology is suitable for tracking the movement of chromosomes in living cells, and we achieved among the best acquisition rates in the literature. Our technological developments were eventually used to explore the physical mechanisms behind the spatial fluctuations of chromosomes, and we observed that standard models of polymer physics can be used to extract quantitative information describing the organization and the spatial dynamics of genome
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.00 (from 0.00 for Dynamique ... to 0.00 for Dynamique ...)

Alternative Names
Aurélien Bancaud wetenschapper

Languages
French (23)

English (3)