WorldCat Identities

Leïchlé, Thierry (19..-....).

Overview
Works: 12 works in 22 publications in 3 languages and 25 library holdings
Roles: Thesis advisor, Opponent, Author
Publication Timeline
.
Most widely held works by Thierry Leïchlé
Wei na ji dian sheng wu chuan gan qi by Liviu Nicu( Book )

1 edition published in 2015 in Chinese and held by 3 WorldCat member libraries worldwide

Ben shu jie shao le xiao xing hua sheng wu chuan gan qi zhong de xin hao zhuan huan ji shu, Sheng wu shi bie yuan jian ji qi gu ding hua ji shu, Yi ji yong yu wei ji dian xi tong sheng wu gong neng hua de tu xing hua ji shu, Bing dui jin yi bu xiao xing hua guo cheng zhong yu dao de tiao zhan yi ji ru he dui bi bu tong sheng wu chuan gan ping tai de xing neng jin xing le lun shu
Intégration monolithique de multiples membranes de silicium poreux pour laboratoires sur puce by Douglas Silva de Vasconcellos( Book )

2 editions published in 2020 in English and held by 2 WorldCat member libraries worldwide

The leading cause of mortality worldwide is due to undiagnosed treatable diseases. The underlying reason is the cost and complexity of most diagnostic processes, as they are often carried out in medical centers and require expensive and complicated equipment. To tackle this issue, the development of point-of-care technology using miniaturized and low-cost lab-on-a-chip is of great importance. The analysis of a sample includes two main steps: sample preparation (sample purification and preconcentration) and sample analysis (biosensing). Different technologies have been successfully developed to implement these steps on chip, however they are usually integrated in a hybrid fashion, where the biosensor and the sample preparation module are realized separately and then combined, which increases the device complexity and possibly its final cost. The aim of this work is to offer a generic and single technological response for on chip sample preparation and sensing by means of porous silicon elements, in the form of lateral porous silicon membranes and standard vertical porous silicon layers monolithically fabricated onto a single planar microfluidic chip. Porous silicon is a nanostructured material with interesting electrical and optical characteristics that has already been used for biosensing via reflectance-based interferometry when properly functionalized and for size/charge-based filtration. Besides, it is a strong candidate for sample concentration using ion concentration polarization due to its ion-selectivity property. However, one must be able to fabricate multiple porous silicon elements with specific morphologies (pore size and porosity) on the same chip, which has not been achieved yet, in order to use porous silicon as a generic technological brick for various functions. Porous silicon is usually fabricated through electrochemical anodization and the doping condition of silicon is one of the parameters that controls the porous layer morphology. We have thus developed a fabrication process based on the selective ion implantation of SOI substrates in order to achieve numerous porous elements of distinct characteristics using a single anodization step. We have successfully fabricated lateral porous silicon membranes bridging planar microchannels with twofold increase in pore size from non-implanted to implanted regions onto a single chip (from ~25 to ~50 nm), while the porosity varied from ~80 to ~90%. By etching the buried oxide layer, we have also formed vertical porous silicon layers, with ~35 nm pore size and ~65% porosity, at the bottom of the microchannels on the same sample. Using the developed fabrication processes, we have designed and fabricated a monolithic lab-on-a-chip integrating sample preconcentration and filtration stages, with a potential to achieve biosensing through optical interferometry
Nanosystèmes électromécaniques pour la biodétection : intégration d'un moyen de transduction et stratégies de biofonctionnalisation by Denis Dezest( Book )

2 editions published in 2015 in French and held by 2 WorldCat member libraries worldwide

With an ultimate limit of detection down to the yoctogram regime (1 yg = 10-24 g),nanoelectromechanical systems (NEMS) resonators used as ultra-sensitive and label-free gravimetric sensors have a high potential for biodetection applications. To date, several challenges currently limit their wide spread use as viable biosensing tools. This PhD thesis addresses the issues related to the transducer integration and the biofunctionnalization. A Lead Zirconate Titatane (PZT)-based piezoelectric transducer has been implemented according to a top-down approach compatible with collective fabrication of NEMS arrays. Two biofunctionnalization strategies, suitable for a NEMS array organization and based on the localized deposition of biological material assisted by microcontact printing and the patterning of molecularly imprinted polymers (MIP) by photolithography, have also been investigated and first proof-of-concept biosensors were demonstrated. These various contributions have the potential to drive future advancements in the realm of NEMS as effective biosensing tools
Système microfluidique µLAS pour l'analyse de l'ADN résiduel : Application au diagnostic de la maladie de Huntington et à l'analyse de l'ADN circulant dans le sang by Rémi Malbec( Book )

2 editions published in 2018 in French and held by 2 WorldCat member libraries worldwide

DNA fragments are circulating in the bloodstream. Circulating DNA fragments size, concentration or sequence are analytical information for the clinician or the molecular biology specialists. For instance, circulating DNA, stem from tumoral cells, can serve as biomarkers for cancer detection and follow up. Collecting those information may be difficult for samples presenting minute amount of DNA. In practice, detecting and analyzing residual DNA, with the relevant level of sensitivity, ask for the development and the association of analytical technologies, such as electrophoresis, to molecular biology techniques, such as PCR amplification. In the prospect of simplifying and speeding up the processes, we have developed and optimized µLAS, a microfluidic system for the simultaneous concentration, separation and detection of residual DNA. Furthermore, µLAS has been applied to the diagnostic of Huntington's disease and the analysis of residual DNA circulating in the bloodstream. Huntington's disease, is caused by the expansion of CAG/CTG repeats on the Huntingtin gene, and provoke neurological degeneration. The diagnostic of Huntington's disease consist in amplifying and measuring this expansion. As the amplification of trinucleotide repeat is far from reliable, we benefit from µLAS sensitivity to reduce the number of amplification cycles, and the time to result. Additionally, for the sensitive analysis of circulating DNA by µLAS, we have proposed an original approach, aiming to reduce the blood sample pre-analytical steps to a simple enzymatic digestion followed by a centrifugation step. Finally, the development of a function for the detection of specific sequences has been made by the selective concentration of a target of interest hybridized to a probe. This approach which use some probes fluorescently labelled in volume, has been patented
Fluorescence-based nanofluidic biosensor platform for real-time measurement of protein binding kinetics by Pattamon Teerapanich( Book )

2 editions published in 2015 in English and held by 2 WorldCat member libraries worldwide

L'analyse cinétique d'interactions de protéines offre une multitude d'informations sur les fonctions physiologiques de ces molécules au sein de l'activité cellulaire, et peut donc contribuer à l'amélioration des diagnostics médicaux ainsi qu'à la découverte de nouveaux traitements thérapeutiques. La résonance plasmonique de surface (SPR) est la technique de biodétection optique de référence pour les études cinétiques d'interaction de molécules biologiques. Si la SPR offre une détection en temps réel et sans marquage, elle nécessite en revanche des équipements coûteux et sophistiqués ainsi que du personnel qualifié, limitant ainsi son utilisation au sein de laboratoires de recherche académiques. Dans ces travaux de thèse, nous avons développé une plateforme de biodétection basée sur l'utilisation de nanofentes biofonctionnalisées combinées avec une détection par microscopie à fluorescence. Ce système permet l'observation en temps réel d'interactions protéines-protéines et la détermination des constantes cinétiques associées, avec des temps de réponse optimisés et une excellente efficacité de capture. La fonctionnalité du système a été démontrée par l'étude des cinétiques d'interaction de deux couples modèles de différentes affinités : le couple streptavidine/biotine et le couple IgG de souris/anti-IgG de souris. Une très bonne cohérence entre les constantes cinétiques extraites, celles obtenues par des expériences similaires réalisées en SPR et les valeurs rapportées dans la littérature montre que notre approche pourrait être facilement applicable pour l'étude cinétique d'interactions de protéines avec une sensibilité allant jusqu'au pM, sur une large gamme de constantes de dissociation. De plus, nous avons intégré un générateur de gradient de concentrations microfluidique en amont de nos nanofentes, permettant ainsi des mesures simultanées de cinétiques d'interactions à différentes concentrations d'analyte en une seule expérience. Ce système intégré offre de nombreux avantages, tels qu'une réduction de la consommation des réactifs et des temps d'analyse par rapport aux approches séquentielles classiques. Cette technologie innovante pourrait ainsi être un outil précieux non seulement pour les domaines du biomédical et de la médecine personnalisée mais aussi pour la recherche fondamentale en chimie et biologie
Étude de microenvironments cellulaires 3D pour le développement des modèles in-vitro de la moelle osseuse by Roberto Riesco Alvarez( Book )

2 editions published in 2021 in English and held by 2 WorldCat member libraries worldwide

L'étude du microenvironnement cellulaire a été une force motrice pour les scientifiques interdisciplinaires au cours de la dernière décennie, afin de fournir aux biologistes des modèles in vitro plus avancés et plus adaptés. Ces modèles cherchent à combler l'écart entre la culture cellulaire monocouche standard et les expériences in vivo avec des conditions de culture 3D standardisées. L'une des principales limites des modèles monocouches est l'imprécision inhérente à la reproduction de la complexité des tissus vivants. Les propriétés structurelles et mécaniques du tissu, l'impact sur l'adhésion des cellules, ou même le mouvement du liquide dans le tissu sont des caractéristiques clés souvent négligées, mais néanmoins pertinentes pour comprendre le comportement cellulaire. Dans les os, la porosité a un impact sur les propriétés mécaniques des structures osseuses et fournit une niche, qui est essentielle pour l'angiogenèse et pour la prolifération et la différenciation des cellules stromales mésenchymateuses (MSc) pendant les processus de réparation des os. Dans ce travail, nous cherchons à étudier des facteurs clés spécifiques du microenvironnement cellulaire de la moelle osseuse et à fournir de nouveaux outils pour reproduire les trois compartiments biologiques dans lesquels la moelle osseuse est divisée dans un seul modèle : endostéal (tissu osseux), périvasculaire (tissu endothélial) et niche centrale.Dans cette thèse, nous présentons deux approches différentes pour structurer des matériaux en 3D et générer la complexité architecturale nécessaire au développement de structures biologiques en 3D dans les cavités d'un échafaudage poreux. La première technique, centrée sur la fabrication additive, permet un contrôle précis de la topographie et cherche à dévoiler les limites des communications de contact cellulaire en produisant des squelettes à porosité ou taille de pores incrémentales. La seconde technique est une nouvelle structuration à forme libre basée sur la réticulation contrôlée d'une émulsion à haute phase interne (HIPE) à une température supérieure au point d'ébullition de la phase interne, l'eau. Ceci génère une expansion contrôlée de la vapeur de l'émulsion et la génération d'une gamme différente de porosité. La structure poreuse qui en résulte donne un dispositif polyvalent qui peut être coupé et déformé pour accéder à différentes informations. La combinaison des deux méthodes nous donne une vue plus large du microenvironnement cellulaire de la moelle osseuse.Dans le premier chapitre de cette thèse, nous présentons un examen complet des indices biophysiques du microenvironnement cellulaire et de l'état actuel des systèmes microphysiologiques de la moelle osseuse. Le chapitre 2 est centré sur la technique de structuration 3D et sur le développement technologique réalisé dans ce travail par les deux techniques. Le chapitre 3 traite de la validation biologique des structures en utilisant une lignée cellulaire, SaOS-2, avec des capacités d'adhésion similaires des cellules osseuses, et des cellules stromales mésenchymateuses (CSM) primaires de la moelle osseuse humaine. Le chapitre 4 présente l'intégration et la caractérisation des deux techniques dans des systèmes perfusables, afin de fournir un flux de liquide au sein du microenvironnement cellulaire. Enfin, le chapitre 5 résume nos résultats et donne un aperçu des travaux actuels et de la perspective de ce projet en cours
Fabrication of suspended plate MEMS resonator by micro-masonry by Adhitya Bhaswara( Book )

2 editions published in 2015 in English and held by 2 WorldCat member libraries worldwide

Lately, transfer printing, a technique that is used to transfer diverse materials such as DNA molecules, photoresist, or semiconductor nanowires, has been proven useful for the fabrication of various static silicon structures under the name micro-masonry. The present study explores the suitability of the micro-masonry technique to fabricate MEMS resonators. To this aim, silicon microplates were transfer-printed by microtip polymer stamps onto dedicated oxide bases with integrated cavities in order to create suspended plate structures. The dynamic behavior of fabricated passive structures was studied under atmospheric pressure and vacuum using both external piezo-actuation and thermomechanical noise. Then, active MEMS resonators with integrated electrostatic actuation and capacitive sensing were fabricated using additional post-processing steps. These devices were fully characterized under atmospheric pressure. The intrinsic Q factor of fabricated devices is in the range of 3000, which is sufficient for practical sensing applications in atmospheric pressure and liquid. We have demonstrated that since the bonding between the plate and the device is rigid enough to prevent mechanical crosstalk between different cavities in the same base, multiple resonators can be conveniently realized in a single printing step. This thesis work shows that micro-masonry is a powerful technique for the simple fabrication of sealed MEMS plate resonators
µLAS: Sizing of expanded trinucleotide repeats with femtomolar sensitivity in less than 5 minutes by Rémi Malbec( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Développement d'un système autonome de détection et de quantification des microARNs avec une plateforme nanofluidique pour la prise en charge du cancer du pancréas by Jean Cacheux( Book )

2 editions published in 2018 in French and held by 2 WorldCat member libraries worldwide

85% of patients affected by pancreatic adenocarcinoma (PDA) are diagnosed at an advanced stage, preventing effective care and curative treatments. Therefore, it is urgent to identify reliable biomarkers for the early detection of disease status, including relapse. MiRNAs (micro ribonucleic acids) are biomarkers of PDA, with demonstrated clinical value for early detection of tumors and monitoring of response to treatment. However, current methods of extraction and detection of miRNA are not compatible with clinical use. New technologies derived from micro and nanofabrication methods have the potential to facilitate the implementation of diagnostic tests, by offering a high degree of portability and robustness, short time to results at low cost. Here, we propose a nanofluidic platform coupled to fluorescence detection for the real time measurement of molecular interactions in a confined environment. We first describe the detection platform via a one-dimension theoretical model based on molecular dynamics to predict the capture of miRNAs into biofunctionalized nanochannels. The originality of the system lies in the non-homogeneous hybridization of miRNA targets onto the sensor. We demonstrate that the analysis of the spatial hybridization profile enables the determination of the affinity of the captured miRNA with the probe sequence in a wash-free single step. We then show the rapid discrimination (less than 10 minutes) of single nucleotide difference (SND) using this strategy. The performance of the device in the context of pancreatic cancer detection is discussed: the effect of sample preparation of complex biofluids is studied and two labeling approaches compatible with the detection of endogenous miRNAs are described and compared, leading to the detection of miRNAs extracted from model cell cultures of pancreatic cancer
Lateral porous silicon membranes for planar microfluidic applications by Yingning He( Book )

2 editions published in 2016 in English and held by 2 WorldCat member libraries worldwide

Lab on a chip devices aim at integrating functions routinely used in medical laboratories into miniaturized chips to target health care applications with a promising impact foreseen in point-of-care testing. Porous membranes are of great interest for on-chip sample preparation and analysis since they enable size- and charge-based molecule separation, but also molecule pre-concentration by ion concentration polarization. Out of the various materials available to constitute porous membranes, porous silicon offers many advantages, such as tunable pore properties, large porosity, convenient surface chemistry and unique optical properties. Porous silicon membranes are usually integrated into fluidic chips by sandwiching fabricated membranes between two layers bearing inlet and outlet microchannels, resulting in three-dimensional fluidic networks that lack the simplicity of operation and direct observation accessibility of planar microfluidic devices. To tackle this constraint, we have developed two methods for the fabrication of lateral porous silicon membranes and their monolithic integration into planar microfluidics. The first method is based on the use of locally patterned electrodes to guide pore formation horizontally within the membrane in combination with silicon-on-insulator (SOI) substrates to spatially localize the porous silicon within the channel depth. The second method relies on the fact that the formation of porous silicon by anodization is highly dependent on the dopant type and concentration. While we still use electrodes patterned on the membrane sidewalls to inject current for anodization, the doping via implantation enables to confine the membrane analogously to but instead of the SOI buried oxide box. Membranes with lateral pores were successfully fabricated by these two methods and their functionality was demonstrated by conducting filtering experiments. In addition to sample filtration, we have achieved electrokinetic pre-concentration and interferometric sensing using the fabricated membranes. The ion selectivity of the microporous membrane enables to carry out sample pre-concentration by ion concentration polarization with concentration factors that can reach more than 103 in 10 min by applying less than 9 V across the membrane[TL1]. These results are comparable to what has already been reported in the literature using e.g. nanochannels with much lower power consumption. Finally, we were able to detect a change of the porous silicon refractive index through the shift of interference spectrum upon loading different liquids into the membrane. The work presented in this dissertation constitutes the first step in demonstrating the interest of porous silicon for all-in-one sample preparation and biosensing into planar lab on a chip
Bioplume : A MEMS-based picoliter droplet dispenser with electrospotting means for patterning surfaces at the micro-and nanometer scales by Thierry Leïchlé( Book )

2 editions published in 2006 in English and held by 2 WorldCat member libraries worldwide

Les travaux présentés dans cette thèse portent sur la conception et la réalisation d'un système de dépôt de gouttes micrométriques à l'aide de matrices de leviers en silicium. L'originalité de ce système, nommé Bioplume, repose sur l'intégration de capteurs de forces et sur l'utilisation de méthodes de dépôt assistées par champ ou par auto-assemblage pour contrôler in-situ la taille, l'uniformité et la composition des motifs réalisés. Le système fonctionne en boucle fermée afin d'automatiser la fabrication de micromatrices de spots tout en garantissant la correction des erreurs d'alignement et le contrôle de la force exercée et du temps de dépôt. Après avoir validé le chargement assisté par électromouillage et le dépôt de solutions biologiques, nous utilisons les phénomènes d'auto-organisation afin de créer directement, à partir de solutions de nanoparticules, des microspots cristallins. Enfin, à l'aide d'électrodes incorporées aux leviers, des réactions électrochimiques sont induites dans les volumes de liquides déposés (de l'ordre du picolitre), permettant l'électrodéposition de cuivre et l'éléctropolymérisation de pyrroles. Les nombreuses fonctionnalités apportées à notre système pendant cette thèse permettent d'étendre ses capacités, faisant de Bioplume une solution fiable et complémentaire aux techniques de jet d'encre et de dip-pen en terme de taille de motifs
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.00 (from 0.00 for Wei na ji ... to 0.00 for Wei na ji ...)

Alternative Names
Thierry Leïchlé wetenschapper

Languages