WorldCat Identities

Laboratoire de Chimie Moléculaire et Catalyse pour l'Energie (Saclay)

Overview
Works: 8 works in 8 publications in 2 languages and 8 library holdings
Roles: Other
Publication Timeline
.
Most widely held works by Laboratoire de Chimie Moléculaire et Catalyse pour l'Energie (Saclay)
Chemistry of CO₂ for the synthesis of radio-labelled compounds by Gianluca Destro( )

1 edition published in 2019 in English and held by 1 WorldCat member library worldwide

Radioisotope labeling is a relevant topic both from a fundament research perspective and for health applications in academy and pharmaceutical and agrochemical industries. In this context, carbon-14 plays a basic role in drug development and ADME and toxicological studies. Traditional synthesis with radiocarbon (¹⁴C), based on lengthy and multistep approaches, have hampered the sustainable of the strategy. The aim of this thesis is to develop novel labeling techniques by isotope exchange. At first, our efforts were focused on the developement of a copper catalyzed dynamic carbon isotope exchange (CIE) using ¹³CO₂ and ¹⁴CO₂, a fundamental and readily available source of radiocarbon on (hetero)aromatic carboxylic acids. The concept of CIE was further extent to another relevant drug scaffolds such as phenyl acetic acids. Hence, it was described a transition metal-free approach able to exchange ¹³CO₂, le ¹⁴CO₂ and ¹¹CO₂, to the best of our knowledge this would be the first example. At last, another CIE with a different primary radiocarbon source such as cyanyde was envisioned. CIE technology expands the concept of late-stage carbon radiolabeling, with substrates bearing carboxylic acid and nitrile moieties, reducing the synthetic costs and limiting the generation of radioactive waste. This new process is still at its infancy and more work need to be done
Transformations réductrices du CO2 pour la formation de liaisons C-N et C-C by Xavier Frogneux( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

In the current world, carbon dioxide (CO2) is the major waste of the massive utilization of fossil resources but only few applications have been developed using this compound. In order to take advantage of its abundancy, the development of novel chemical transformation of CO2 to produce fine chemicals is of high interest in the scientific community. In particular, the formation of C-N bond(s) from CO2 and amine compounds unlocks a new way to access high energy and value-added. A second type of highly desirable transformation is the formation of C-C bonds with CO2 so as to synthesize carboxylic acid derivatives. The utilization of hydrosilanes as mild reductants allows the reactions to proceed under 1 bar of CO2 with abundant and cheap metal-based catalysts (iron, zinc) or with organocatalysts. The synthesis of formamides, methylamines and aminals from CO2 are described herein. Ultimately, the catalytic carboxylation of carbosilanes has been achieved for the first time using copper-based complexes. In the specific case of 2-pyridylsilanes, the use of pentavalent fluoride salts allowed us to perform the reaction without catalyst
Métallopolymères des éléments f : nouveaux matériaux hybrides semi-conducteurs phosphorescents pour les diodes électroluminescentes organiques by Alessandra Sergent( )

1 edition published in 2013 in French and held by 1 WorldCat member library worldwide

This work deals with the synthesis and physico-chemical characterization of lanthanide-containing metallopolymers to use them as active components in electroluminescent diodes. The emission properties of trivalent lanthanides are particularly interesting in the case of our application. The conjugated chain polymer built up with charge-transport groups. These materials should provide all the properties (conduction and emission) to be used as active layer in PLEDs (Polymer Light-Emitting Diodes) which are devices made by solution deposition techniques. The PLEDs offer the advantage to have a simplified structure in comparison with OLEDs (Organic Light-Emitting Diodes) which are built by juxtaposition of layers constituted by small organic molecules.The syntheses of three series of conjugated polymers have been achieved. The polymerization reaction has been carried out by a Pd-catalyzed Suzuki-Miyaura coupling between fluorenes moieties and monomers bearing carbazole and/or benzimidazole groups acting as a coordinating site for the lanthanide ion. Several metallopolymers were also synthesized. The isolated compounds were characterized by NMR, elemental analyses, and GPC. Photophysical studies have been performed on all the polymers and metallopolymers. Finally, these compounds have been used for the design of electroluminescent devices
Synthèse de nouveaux ligands tripodes et de leurs complexes de coordination pour l'activation de petites molécules by Alicia Aloisi( )

1 edition published in 2018 in French and held by 1 WorldCat member library worldwide

The extensive use of fossile fuel is currently causing climate change. Anthropogenic emissions of CO₂ enhance the greenhouse effect, resulting in global warming. In order to mitigate this climate change, the share of renewable energy is increasing and hydrogen seems to be a good candidate to stock energy to compensate the seasonal variations of those energies. One way to store H₂ is the hydrogenation of CO₂ to synthesise liquid molecules as formic acid and methanol. Those liquids can be conveyed in an easier way. In case of a lack of energy, H₂ can be recovered through dehydrogenation of those molecules thinks to catalysts. In this thesis, we studied the synthesis of organometallic complexes able to activate those small molecules, thus, growing a fundamental knowledge. As a number of triphos-metal complexes are known to catalyse hydrogenation and dehydrogenation reactions, we focused on the elaboration of ligands alike. With those ligands in hand, several non-noble metal based complexes (Fe (II), Co (II) and Cu (I)) were synthesized, which are active in CO₂ hydroboration catalysis. A complex of ruthenium(II)was grafted on silica through one of this ligand, in order to recycle it when it used as a catalyst. On the second hand, we designed a new ligand which could favor metal-ligand cooperativity. H₂ was succesfully activated with a copper(I) complex coordinated by this ligand, demonstrating that cooperation of the ligand. Finally, the first known cobalt complex active in dehydrogenation of formic acid was synthesised
Une approche diagonale pour la transformation catalytique du dioxyde de carbone by Christophe Gomes( )

1 edition published in 2013 in French and held by 1 WorldCat member library worldwide

Les émissions de dioxyde de carbone n'ont de cesse d'augmenter avec l'exploitation massive des hydrocarbures pour la production d'énergie et de composés chimiques. Dans ce contexte, le développement d'une économie permettant de limiter l'impact écologique de notre mode de vie actuel se fait de plus en plus pressant et l'utilisation du CO2 comme matière première carbonée constitue une alternative attrayante aux ressources fossiles pour la production de consommables chimiques. Ces travaux de thèse ont porté sur le développement de nouvelles transformations catalytiques du CO2 selon une nouvelle approche, dite diagonale. Cette stratégie permet d'accéder à des produits à hautes valeurs énergétiques et commerciales tels que les formamides ou les hétérocycles azotés. La maîtrise énergétique dans ces réactions est assurée par l'utilisation de réducteurs doux comme les hydrosilanes et les hydroboranes. Ces nouveaux procédés sont accélérés par des catalyseurs organiques ; ils permettent ainsi de contourner les problèmes de coût, d'abondance et de toxicité habituellement rencontrés avec les catalyseurs métalliques. À travers des études théoriques et expérimentales, la compréhension des mécanismes réactionnels intervenant dans ces réactions a permis d'optimiser au mieux les conditions réactionnelles et les performances des catalyseurs employés afin de répondre aux exigences de la chimie durable
Recyclage du CO2 : Une alternative à la pétrochimie pour la synthèse de molécules azotées by Enguerrand Blondiaux( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

The fossil carbon resources (oil, coal, gas) cover 85% of world energy portfolio and serve as raw materials for 95% of organic chemicals consumables (plastics, fertilizers, pesticides...). The decrease of oil resources and the accumulation of CO2 arising from their use thus pose environmental, energetic and availability of raw materials problems for the chemical industry. In this context, it is appropriate to propose new methods of chemical synthesis to build a sustainable industry based on the use of renewable carbon resources. Bypassing petrochemicals and valorize its carbon waste, CO2, to build molecular structures without energy purposes (polymers, fertilizers, synthetic textiles ...) represents a leading scientific challenge. From this perspective, new nitrogen molecules synthetic processes have been developed from CO2 as a carbon source, amines as nitrogen source and mild reductant such as hydrosilanes and hydroboranes as a hydrogen source. These processes are accelerated by the use of metal-free catalysts and enable the production of formamides, formamidines, aminals and methylamines, which are basic molecules of the chemical industry
Nouveaux procédés catalytiques pour le recyclage de déchets ligno-cellulosiques, de polymères et de dérivés du CO₂ by Elias Feghali( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

Complexes carbéniques nucléophiles de l'uranium by Jean-Christophe Tourneux( )

1 edition published in 2012 in French and held by 1 WorldCat member library worldwide

 
Audience Level
0
Audience Level
1
  General Special  
Audience level: 0.00 (from 0.00 for Chemistry ... to 0.00 for Chemistry ...)

Alternative Names
Commissariat à l'énergie atomique et aux énergies alternatives (Saclay). Laboratoire de Chimie de Coordination des Eléments f

Commissariat à l'énergie atomique et aux énergies alternatives (Saclay). Laboratoire de Chimie Moléculaire et Catalyse pour l'Energie

Laboratoire de Chimie de Coordination des Eléments f (LCF) (Saclay)

LCCEf (Saclay)

LCMCE (Saclay)

Languages