Heulot, Julien
Overview
Works: | 5 works in 5 publications in 2 languages and 5 library holdings |
---|---|
Roles: | Author, Contributor |
Publication Timeline
.
Most widely held works about
Julien Heulot
- Julien Heulot, Paris : realisations architecturales by Julien Heulot( Book )
Most widely held works by
Julien Heulot
Efficient DVFS for low power HEVC software decoder by
Erwan Nogues(
)
1 edition published in 2016 in English and held by 2 WorldCat member libraries worldwide
1 edition published in 2016 in English and held by 2 WorldCat member libraries worldwide
Paris : réalisations architecturales by
Julien Heulot(
Book
)
1 edition published in 1932 in French and held by 1 WorldCat member library worldwide
1 edition published in 1932 in French and held by 1 WorldCat member library worldwide
Realisations architecturales by
Julien Heulot(
Book
)
1 edition published in 1932 in French and held by 1 WorldCat member library worldwide
1 edition published in 1932 in French and held by 1 WorldCat member library worldwide
Runtime multicore scheduling techniques for dispatching parameterized signal and vision dataflow applications on heterogeneous
MPSoCs by
Julien Heulot(
)
1 edition published in 2015 in English and held by 0 WorldCat member libraries worldwide
Une tendance importante dans le domaine de l'embarqué est l'intégration de plus en plus d'éléments de calcul dans les systèmes multiprocesseurs sur puce (MPSoC). Cette tendance est due en partie aux limitations des puissances individuelles de ces éléments causées par des considérations de consommation d'énergie. Dans le même temps, en raison de leur sophistication croissante, les applications de traitement du signal ont des besoins en puissance de calcul de plus en plus dynamique. Dans la conception et le développement d'applications de traitement de signal multicoeur, l'un des principaux défis consiste à répartir efficacement les différentes tâches sur les éléments de calcul disponibles, tout en tenant compte des changements dynamiques des fonctionnalités de l'application et des ressources disponibles. Une utilisation inefficace peut conduire à une durée de traitement plus longue et/ou une consommation d'énergie plus élevée, ce qui fait de la répartition des tâches sur un système multicoeur une tâche difficile à résoudre. Les modèles de calcul (MoC) flux de données sont communément utilisés dans la conception de systèmes de traitement du signal. Ils décomposent la fonctionnalité de l'application en acteurs qui communiquent exclusivement par l'intermédiaire de canaux. L'interconnexion des acteurs et des canaux de communication est modélisée et manipulée comme un graphe orienté, appelé un graphique de flux de données. Il existe différents MoCs de flux de données qui offrent différents compromis entre la prédictibilité et l'expressivité. Ces modèles de calculs sont communément utilisés dans la conception de systèmes de traitement du signal en raison de leur analysabilité et leur expressivité naturelle du parallélisme de l'application. Dans cette thèse, une nouvelle méthode de répartition de tâches est proposée afin de répondre au défi que propose la programmation multicoeur. Cette méthode de répartition de tâches prend ses décisions en temps réel afin d'optimiser le temps d'exécution global de l'application. Les applications sont décrites en utilisant le modèle paramétrée et interfacé flux de données (PiSDF). Ce modèle permet de décrire une application paramétrée en autorisant des changements dans ses besoins en ressources de calcul lors de l'exécution. A chaque exécution, le modèle de flux de données paramétré est déroulé en un modèle intermédiaire faisant apparaitre toute les tâches de l'application ainsi que leurs dépendances. Ce modèle est ensuite utilisé pour répartir efficacement les tâches de l'application. La méthode proposé a été testée et validé sur plusieurs applications des domaines de la vision par ordinateur, du traitement du signal et du multimédia
1 edition published in 2015 in English and held by 0 WorldCat member libraries worldwide
Une tendance importante dans le domaine de l'embarqué est l'intégration de plus en plus d'éléments de calcul dans les systèmes multiprocesseurs sur puce (MPSoC). Cette tendance est due en partie aux limitations des puissances individuelles de ces éléments causées par des considérations de consommation d'énergie. Dans le même temps, en raison de leur sophistication croissante, les applications de traitement du signal ont des besoins en puissance de calcul de plus en plus dynamique. Dans la conception et le développement d'applications de traitement de signal multicoeur, l'un des principaux défis consiste à répartir efficacement les différentes tâches sur les éléments de calcul disponibles, tout en tenant compte des changements dynamiques des fonctionnalités de l'application et des ressources disponibles. Une utilisation inefficace peut conduire à une durée de traitement plus longue et/ou une consommation d'énergie plus élevée, ce qui fait de la répartition des tâches sur un système multicoeur une tâche difficile à résoudre. Les modèles de calcul (MoC) flux de données sont communément utilisés dans la conception de systèmes de traitement du signal. Ils décomposent la fonctionnalité de l'application en acteurs qui communiquent exclusivement par l'intermédiaire de canaux. L'interconnexion des acteurs et des canaux de communication est modélisée et manipulée comme un graphe orienté, appelé un graphique de flux de données. Il existe différents MoCs de flux de données qui offrent différents compromis entre la prédictibilité et l'expressivité. Ces modèles de calculs sont communément utilisés dans la conception de systèmes de traitement du signal en raison de leur analysabilité et leur expressivité naturelle du parallélisme de l'application. Dans cette thèse, une nouvelle méthode de répartition de tâches est proposée afin de répondre au défi que propose la programmation multicoeur. Cette méthode de répartition de tâches prend ses décisions en temps réel afin d'optimiser le temps d'exécution global de l'application. Les applications sont décrites en utilisant le modèle paramétrée et interfacé flux de données (PiSDF). Ce modèle permet de décrire une application paramétrée en autorisant des changements dans ses besoins en ressources de calcul lors de l'exécution. A chaque exécution, le modèle de flux de données paramétré est déroulé en un modèle intermédiaire faisant apparaitre toute les tâches de l'application ainsi que leurs dépendances. Ce modèle est ensuite utilisé pour répartir efficacement les tâches de l'application. La méthode proposé a été testée et validé sur plusieurs applications des domaines de la vision par ordinateur, du traitement du signal et du multimédia
Audience Level
0 |
![]() |
1 | ||
General | Special |

- Nogues, Erwan Author
- Menard, Daniel Contributor
- Hamidouche, Wassim Contributor
- Pelcat, Maxime Opponent Contributor
- Raffin, Erwan Contributor
- SpringerLink (Online service)
- Robin, Ladislas Contributor
- Herrou, Glenn Contributor
- Dupouy, Auguste
- Girault, Alain (chercheur en informatique) Other Opponent