WorldCat Identities

Grau, Etienne (1983-....).

Works: 15 works in 15 publications in 2 languages and 15 library holdings
Roles: Opponent, Thesis advisor, Author
Publication Timeline
Most widely held works by Etienne Grau
Development of bio-based epoxy thermosets for aerospace launchers by Etienne Savonnet( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

Today, most of the epoxy resins produced are derived from bisphenol-A (BPA). However, BPA is subject to strong regulations, particularly because of its recent classification as chemical of very high concern by the European Chemicals Agency (ECHA). In order to anticipate new regulations, ArianeGroup has decided to replace this substance in its applications. The aim of this thesis is to develop new bio-based epoxy thermosets with comparable thermomechanical properties as the ones issued from bisphenol-A-based materials. For this purpose, a bio-platform of epoxy monomers from vanillin, methyl vanillate, 2,6-dimethoxyphenol and eugenol was developed. These precursors were cross-linked with amines used as curing agent to obtain bio-based epoxy networks. The latter demonstrated thermomechanical properties well above the DGEBA-type reference, especially in terms of glass transition temperature (> 300 °C) and char content (> 50%). Finally, the synthesis of bio-based diamines derived from divanillin was developed and enabled the synthesis of fully bio-based epoxy networks with promising thermomechanical properties
Design of original vegetable oil-based cyclic carbonates and amines towards Poly(HydroxyUrethane)s by Océane Lamarzelle( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

Synthesis and functionalization of fatty acid-based hyperbranched polymers by Quentin Passet( )

1 edition published in 2019 in French and held by 1 WorldCat member library worldwide

Ces travaux de thèse portent sur la valorisation de la biomasse oléagineuse, via la polymérisation de synthons, issus d'huiles végétales, en polymères hyper-ramifiés. Ces recherches ont conduit à la synthèse et à la purification d'un nouveau monomère biosourcé, le 10,11-epoxy undecan-1-ol (EUnd), dont la polymérisation par ouverture de cycle (ROMBP) a permis de générer des polyéthers hyper-ramifiés biosourcés. Les conditions de polymérisations ont été étudiées en laboratoire dans le but d'optimiser les rendements de synthèse mais aussi afin de contrôler la structure chimique, ainsi que leurs propriétés. La copolymérisation de l'EUnd avec le glycidol a permis d'atteindre de nouvelles propriétés, notamment en termes de solubilité. Une seconde partie fut consacrée à la fonctionnalisation de polyesters hyper-ramifiés biosourcés, développés au LCPO lors du projet HyPerBioPol. L'objectif étant de contrôler la solubilisation des composés dans différents milieux, polaires et apolaires, afin de créer des polymères pouvant être utilisés comme agents de réticulation
Dispersions aqueuses de polyuréthanes bio-sourcés sans isocyanates by Estelle Rix( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

Polyurethanes are a major polymer family; they are industrially obtained from phosgene derivatives: isocyanates. In order to avoid the use of such toxic compounds and to promote the use of biomass, this thesis investigates the synthesis of aqueous dispersions of nonisocyanate polyurethanes derived from vegetable oils. Two synthesis pathways have been studied; transurethanization and aminolysis of cyclic carbonates. Bis-carbamates and biscyclic carbonates were synthesized from fatty acids, and their polymerizations with diols or diamines were studied in bulk. The two routes allow the production of polyurethanes in a few hours at 20-130°C. Sodium methoxide is used as catalyst for transurethanization reactions while the other synthesis pathway does not require catalysts to proceed. Polyurethanes obtained have molar mass (Mn) around 5-17kg.mol-1, which is in accordance with the literature. The polymerization in aqueous miniemulsion was then investigated for the synthesis of polyurethane by aminolysis of cyclic carbonates. Many formulation experiments were necessary to achieve stable miniemulsion and latex; aqueous dispersions of bio-based non-isocyanate polyurethanes were then obtained
New fatty acid-based polyesters as viscosity control additives for lubricants by Hélène Meheust( )

1 edition published in 2018 in English and held by 1 WorldCat member library worldwide

The aim of this thesis was to promote the use of polyesters from oleaginous resources as viscosity control additives for lubricants. The hydroxyl-acid type monomers were polymerized through polycondensation route. First, poly(methyl ricinoleate) and its homologous poly(methyl-12-hydroxystearate) were synthesized in a large range of molecular weights and their use as thickeners of lubricant oils was demonstrated. Secondly, comb polyesters derived from poly(methyl ricinoleate) were designed via thiol-ene addition and polycondensation process. The effect of the polyester architecture on their behavior in solution was investigated and revealed that comb polymers are the most suitable for applications that required a thickening efficiency and a pour point depressant effect. Then, comb (co)poly(9-alkyl 12-hydroxystearate)s with various pendant alkyl chains were designed in order to control their solubility in a mineral oil, the Yubase 4+, and to limit the oil viscosity decrease of these oils with temperature. Finally, the behavior in dodecane of two comb (co)poly(9-alkyl 12-hydroxystearate)s revealed that the polymer chains tend to aggregate at low temperature and to disaggregate with the temperature increase. This phenomenon is in accordance with one of the oil Viscosity Index Improver behaviors, described in literature
Les huiles végétales comme plateforme pour la conception de nouveaux polyesters hyper-ramifiés by Blandine Testud( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

The aim of this thesis was to use vegetable oils as a platform for the design of more sustainable polyesters of hyperbranched architecture. For that purpose, the approach by polycondensation of ABn-type monomers (n ≥ 2) was favored. Plant oils and/or fatty acid methyl esters were chemically modified to synthesize multifunctional precursors featuring ester (A) and alcohol moieties (B). Simple, safe and efficient chemical transformations were considered to provide industrial perspectives to this work. Two main platforms of ABn-type monomers were developed by (1) acid hydrolysis of epoxidized vegetables oils and (2) thiol-ene/metathesis coupling reactions. The subsequent polycondensation of these oily-derived monomers, performed in bulk, gave access to novel renewable hyperbranched polyesters. The branching density as well as the thermo-mechanical properties of these materials were adjusted by designing and selecting the chemical structure of the fatty acid-based monomers. Finally, an exploratory work was carried out regarding the post-functionalization of both the core and the periphery of these hyperbranched polyesters with the aim at tuning their properties and thus opening the scope of their applications, from commodity plastics to advanced materials
Différence de couleur entre duramen et aubier du bois de Pin maritime : identification moléculaire, homogénéisation et évolution by Jérémy Mehats( )

1 edition published in 2020 in French and held by 1 WorldCat member library worldwide

Maritime pine is one of the most common softwood found in South West of France, covering more than 10% of the total forestry area of the country. With the development of the petroleum-based chemistry, maritime pine has been mostly used for its wood that possesses some good mechanical properties, for the elaboration of materials for packaging purposes (ex: wood pallet) or engineered wood products for structural applications. Nevertheless, due to consumers' feedbacks and to requirements specifications, the industries identified a major issue: the color difference between heartwood and sapwood.Heartwood is known to have a brown reddish color contrary to sapwood, which have a pale yellow tint. This coloration difference results in a depreciation of the commercial value of the finished material. Thus, industrials are looking for treatments to homogenize the color and to valorize all their productsThe purpose of this PhD is firstly to identify the chromophores that are responsible of this color differences between the two wood structures and then to develop an homogenisation treatment based on the paper industry processes, particularly using alkaline hydrogen peroxide chemistry
Synthèse de polyhydroxyuréthanes biosourcés par extrusion réactive : élaboration de matériaux aux propriétés originales by Fiona Magliozzi( )

1 edition published in 2019 in French and held by 1 WorldCat member library worldwide

This thesis work deals with the application of reactive extrusion to the bulk synthesis of polyhydroxyurethanes (PHUs). On the one hand, thermoplastic PHUs have been synthesized from three biobased 5-membered biscyclic carbonates, two of them being ester- or ether- chemically 'activated'. The complete conversion of reactive functions has been reached in most cases, in relatively short reaction times (few hours), despite very cohesive systems, specifically in the case of one biscyclic carbonate bearing amide moieties. On the other hand, thermosets PHUs with shape memory capacity and reprocessability have been synthesized through this process. Simultaneously, a study was performed on model reactions in order to determine the experimental conditions that limit urea formation during the aminolysis of biscyclic carbonates. Finally, a purification protocol was developed in order to separate the two enantiomers of DGDC biscyclic carbonate. The polymerization of these two separated enantiomers with diamines demonstrated that the stereochemistry of biscyclic carbonate monomers plays a crucial role in the final polymer size and properties
Conception de nouveaux monomères glycolipidiques par voie chimio-enzymatique pour la synthèse de polymères amphiphiles et leur auto-assemblage dans l'eau : vers des applications de vectorisation by Dounia Arcens( )

1 edition published in 2017 in French and held by 1 WorldCat member library worldwide

Ces travaux de thèse portent sur la conception par voie chimio-enzymatique de polymères amphiphiles issus de glycolipides, capables de s'auto-assembler en phase aqueuse et susceptibles de répondre à des applications de vectorisation de principes actifs. Après une étude préalable des paramètres influents lors de la synthèse enzymatique, huit monomères glycolipidiques porteurs de fonctions esters vinyliques,méthacrylate ou [alpha]-méthylstyrène ont été synthétisés à partir de dérivés d'huile de ricin et de glucose. Les monomères porteurs d'une fonction ester vinylique comme groupement polymérisable ont été copolymérisés en présence d'acétate de vinyle mais les copolymères ainsi formés n'ont pas montré de capacité à s'autoassembler. Les monomères fonctionnalisés par un groupement méthacrylate, ont été copolymérisés en présence de méthacrylate de méthyle ; trois gammes de copolymères ont ainsi été synthétisées par polymérisation radicalaire, les deux premières selon un mécanisme non contrôlé en présence d'un agent de transfert thiolé ou pas et la troisième selon la méthodologie RAFT. Dans tous les cas, des nanoparticules bien définies et stables pendant plusieurs mois ont été obtenues par auto-assemblage de ces trois gammes de copolymères en phase aqueuse. Le Rouge de Nil a été piégé au sein de ces nanoparticules puis relargué par ajout de chlorure de sodium, laissant entrevoir des applications de stabilisation et de vectorisation de principes actifs pour ces nouveaux copolymères
Moussage de polymères par des procédés physiques by Julie Dubois( )

1 edition published in 2016 in French and held by 1 WorldCat member library worldwide

Cette thèse porte sur la production et l'étude de mousses polymères microporeuses, par dissolution de gaz. Plusieurs techniques expérimentales ont été améliorées ou adaptées pour la réalisation des mousses et la caractérisation des systèmes étudiés. De plus il est démontré que les paramètres du procédé, tels que la pression et la température, permettent la différenciation entre les différentes voies de moussage utilisées. Ceux-ci ont une influence significative sur les caractéristiques finales des mousses
Fatty acids as a source of original aliphatic polycarbonate materials by Pierre-Luc Durand( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

Fatty acids were derivatized with the objective to design bio-based aliphatic polycarbonate(APC) materials. To that purpose, two platforms of lipidic 6-membered cyclic carbonates were prepared following synthetic routes either involving the ring-closure of a malonate intermediate or the coupling reaction between a fatty acid and 2-amino-1,3-propanediol. The ring-openingpolymerization (ROP) of these cyclic carbonates was next investigated. The first platform of 6CCswas polymerized in the presence of Sn(Oct)2 as catalyst, yielding low Tg aliphatic polycarbonates ranging from -61°C to -26°C with respect to the size of the pendant aliphatic side chains. The polymerization of the second lipidic 6CC platform was performed in a controlled fashion using DBU/Schreiner thiourea as catalytic system. Taking advantage of the presence of unsaturation functions on the linear bio-based APCs, cross-linked polycarbonate materials were then prepared.Several cross-linking methods were tested such as the irreversible thiol-ene coupling, the thermoreversible Diels-Alder reaction and the photo-reversible [2+2] cyclo-addition reaction between two cinnamate moieties. Fatty acid-based cross-linked APCs were thus designed and characterized; the latter exhibit tunable physico-chemical properties as a function of the monomer structure and the cross-linking density
Polymerization of ethylene : from free radical homopolymerization to hybrid radical / catalytic copolymerization by Etienne Grau( )

1 edition published in 2010 in English and held by 1 WorldCat member library worldwide

This work aims to study ethylene polymerization from the free radical polymerization process to the copolymerization by a hybrid radical/catalytic mechanism. PE is synthesized by free radical polymerization under milder experimental conditions than industrial ones (P>1000 bar and T>100°C). Indeed free radical polymerization of ethylene is efficient even down to pressure of 5 bar and temperature of 10°C. Several unexpected behaviors are observed such as a high solvent activation effect. Beside the slurry process in organic solvent, polymerization in aqueous dispersed media is also performed. Stable PE latexes are obtained with solid contents up to 40%. Two different PE particles morphologies are observed cylinder-like and sphere-like. Then free radical copolymerization is studied using a broad range of polar vinyl monomers in organic solvent and emulsion. Insertions up to 50% of ethylene are obtained under mild conditions. The ambivalent role of comonomer as monomer and activator of the polymerization is highlighted. In order to obtain a wide range of composition of polar/non-polar copolymers a new technique of polymerization has been developed. A nickel complex is used to initiate the free radical polymerization and to catalyse the coordination/insertion ethylene polymerization. This nickel complex is capable of a reversible homolytic cleavage of its nickel-carbon bond. Finally, this hybrid process is used to copolymerize efficiently ethylene with various polar vinyl monomers. Multiblock copolymers with ethylene content from 1% to 99% are obtained by simply varying the monomer feeds
Valorisation du divinylglycol (DVG), dérivé du glycérol, pour la synthèse de polymères originaux by Léa Bonnot( )

1 edition published in 2017 in French and held by 1 WorldCat member library worldwide

In the context of the development of bio-refineries, glycerol and its derivatives areco-products of oleochemistry for which new valorization routes must be found. This thesisdeals with the polymerizability study of a glycerol derivative, divinylglycol (DVG), asymmetrical C-6 monomer which bears a vicinal diol and two vinyl functions. In this work, thereactivity of the hydroxyl and vinyl functions of DVG in polycondensation and polyadditionreactions was studied. In a first step, the synthesis of polyesters and polyurethanes wascarried out by reaction of DVG with biosourced diesters and diisocyanates, respectively. Thevinyl functions of DVG were then used to synthesize original polymers by ADMETpolymerization and thiol-ene addition. Finally, three-dimensional epoxy-amine networkswere prepared by polymerization between a series of diamines and the bis-epoxidized DVG,previously obtained by oxidation of the double bonds. These different methods ofpolymerization showed that DVG double bonds were more reactive than the alcohol functionsand that a panel of original polymers could be obtained from this bio-sourced synthon
Glycolipids : from synthesis and self-assembly studies to the design of original bio-based polymers by Geoffrey Hibert( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

The aim of this thesis was to study glycolipids and particularly trehalose esters for the synthesis of new bio-sourced polymers. Trehalose monoesters and diesters were synthesized by two esterification pathways of the primary alcohol of trehalose with different fatty acids. The first synthetic route is a protective group-free esterification using a peptide coupling agent and the second one is a lipase-catalyzed esterification. The self-assembly properties of the trehalose esters were investigated. Trehalose monoesters showed surfactant properties in water and trehalose monoerucate was even able to form gels in water. The trehalose diesters appeared to be good gelators for organic solvent and vegetable oil. Thus, gels in three vegetable oils were prepared and their morphology and rheological properties were studied. Afterwards, trehalose diesters were functionalized and polymerized with different strategies.Thus, polyurethanes and poly(hydroxyurethane)s were obtained by polycondensation where as glyco-polyesters were synthesized by acyclic diene metathesis (ADMET) and thiol-enepolymerization. Finally, the self-assembly properties of these polymers were investigated. The latter were able to form some nanoparticles by solvent displacement method
Elaboration de nouveaux élastomères thermoplastiques biosourcés à base d'huiles végétales by Christopher Costa( )

1 edition published in 2020 in French and held by 1 WorldCat member library worldwide

With the purpose of expanding the Pebax® range, commercialised by Arkema, this study was dedicated to the synthesis of multiblock thermoplastic elastomers, including low glassy transition temperature bio-sourced soft blocks and rigid semi-cristalline polyamide. First, soft polyester and polyamide pre-polymers resulting from the polycondensation of commercialised dimerised fatty acids Pripol® (diol and diacid) and Priamine (diamine) as well as rigid PA-11 pre-polymers bearing amine or acid chain-ends, have been synthesized. From these pre-polymers, two distinct poly(ester-b-amide) (PEsBA) multiblock copolymer families containing variable ratios of amide functions and hard and soft phases have been elaborated, their properties and morphologies evaluated and compared to the ones of the reference: Arkema's Pebax®. Second, new series of PEsBA copolymers have been prepared according to two synthetic processes, one in two steps not requiring the prior synthesis of the soft pre-polymer and the second, in one step, with no initially elaborated pre-polymers. The study of the structure-morphology-properties relationship of those copolymers allowed the discrimination of some of them exhibiting properties in agreement with the objectives. Lastly, starting from hard and soft polyamide pre-polymers, two new copolyamide (COPA) families have been synthesised and their properties compared to those of the established PEsBA and PEBA systems
moreShow More Titles
fewerShow Fewer Titles
Audience Level
Audience Level
  Kids General Special  
Audience level: 0.96 (from 0.95 for Polymeriza ... to 0.96 for New fatty ...)

Alternative Names
Etienne Grau wetenschapper