WorldCat Identities

Quax, Tessa

Works: 9 works in 9 publications in 1 language and 24 library holdings
Roles: Author
Publication Timeline
Most widely held works by Tessa Quax
Growth phase dependent cell shape of Haloarcula by Sabine Schwarzer( )

1 edition published in 2021 in English and held by 3 WorldCat member libraries worldwide

Abstract: Several haloarchaea are reported to be pleomorphic, while others exhibit remarkable shapes, such as squares. Recently, Haloferax volcanii was found to alter its morphology during growth. Cells are motile rods in early exponential phase, and immotile plates in stationary phase. It is unknown if this growth phase dependent cell shape alteration is a specific feature of Hfx. volcanii, or conserved amongst haloarchaea. Here, we studied the cell shape and motility of two haloarchaea species Haloarcula hispanica and Haloarcula californiae. With a combination of light and electron microscopy, we observed that both strains undergo a growth phase dependent morphological development, albeit in a slightly different fashion as Hfx. volcanii. For both Haloarcula strains, the cell size is changing throughout growth. Cell shape seems to be related with motility, as highly motile cells on semi-solid agar plates are predominantly rod-shaped. We conclude that the growth phase dependent cell morphology alteration might be a common feature amongst haloarchaea, and that cell shape is generally linked with a motile life style. The conservation of this phenomenon underscores the importance of studies of the molecular mechanisms regulating cell shape in archaea
Viruses of microbes by Laurent Debarbieux( )

1 edition published in 2017 in English and held by 3 WorldCat member libraries worldwide

Viral hijack of filamentous surface structures in archaea and bacteria by Colin Tittes( )

1 edition published in 2021 in English and held by 3 WorldCat member libraries worldwide

Abstract: The bacterial and archaeal cell surface is decorated with filamentous surface structures that are used for different functions, such as motility, DNA exchange and biofilm formation. Viruses hijack these structures and use them to ride to the cell surface for successful entry. In this review, we describe currently known mechanisms for viral attachment, translocation, and entry via filamentous surface structures. We describe the different mechanisms used to exploit various surface structures bacterial and archaeal viruses. This overview highlights the importance of filamentous structures at the cell surface for entry of prokaryotic viruses
Cellular and genomic properties of Haloferax gibbonsii LR2-5, the host of euryarchaeal virus HFTV1 by Colin Tittes( )

1 edition published in 2021 in English and held by 3 WorldCat member libraries worldwide

Abstract: Hypersaline environments are the source of many viruses infecting different species of halophilic euryarchaea. Information on infection mechanisms of archaeal viruses is scarce, due to the lack of genetically accessible virus-host models. Recently, a new archaeal siphovirus, Haloferax tailed virus 1 (HFTV1), was isolated together with its host belonging to the genus Haloferax, but it is not infectious on the widely used model euryarcheon Haloferax volcanii. To gain more insight into the biology of HFTV1 host strain LR2-5, we studied characteristics that might play a role in its virus susceptibility: growth-dependent motility, surface layer, filamentous surface structures, and cell shape. Its genome sequence showed that LR2-5 is a new strain of Haloferax gibbonsii. LR2-5 lacks obvious viral defense systems, such as CRISPR-Cas, and the composition of its cell surface is different from Hfx. volcanii, which might explain the different viral host range. This work provides first deep insights into the relationship between the host of halovirus HFTV1 and other members of the genus Haloferax. Given the close relationship to the genetically accessible Hfx. volcanii, LR2-5 has high potential as a new model for virus-host studies in euryarchaea
Positioning of the motility machinery in halophilic archaea by Zhengqun Li( )

1 edition published in 2019 in English and held by 3 WorldCat member libraries worldwide

Abstract: Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays. While the cellular positioning of the chemotaxis machinery and that of the flagellum have been studied in detail in bacteria, we have little knowledge about the localization of such macromolecular assemblies in archaea. Although the archaeal motility structure, the archaellum, is fundamentally different from the flagellum, archaea have received the chemosensory machinery from bacteria and have connected this system with the archaellum. Here, we applied a combination of time-lapse imaging and fluorescence and electron microscopy using the model euryarchaeon Haloferax volcanii and found that archaella were specifically present at the cell poles of actively dividing rod-shaped cells. The chemosensory arrays also had a polar preference, but in addition, several smaller arrays moved freely in the lateral membranes. In the stationary phase, rod-shaped cells became round and chemosensory arrays were disassembled. The positioning of archaella and that of chemosensory arrays are not interdependent and likely require an independent form of positioning machinery. This work showed that, in the rod-shaped haloarchaeal cells, the positioning of the archaellum and of the chemosensory arrays is regulated in time and in space. These insights into the cellular organization of H. volcanii suggest the presence of an active mechanism responsible for the positioning of macromolecular protein complexes in archaea.<br><br>IMPORTANCE Archaea are ubiquitous single cellular microorganisms that play important ecological roles in nature. The intracellular organization of archaeal cells is among the unresolved mysteries of archaeal biology. With this work, we show that cells of haloarchaea are polarized. The cellular positioning of proteins involved in chemotaxis and motility is spatially and temporally organized in these cells. This suggests the presence of a specific mechanism responsible for the positioning of macromolecular protein complexes in archaea
DNA-interacting characteristics of the archaeal rudiviral protein SIRV2_Gp1 by Eveline Peeters( )

1 edition published in 2017 in English and held by 3 WorldCat member libraries worldwide

Abstract: Whereas the infection cycles of many bacterial and eukaryotic viruses have been characterized in detail, those of archaeal viruses remain largely unexplored. Recently, studies on a few model archaeal viruses such as SIRV2 (Sulfolobus islandicus rod-shaped virus) have revealed an unusual lysis mechanism that involves the formation of pyramidal egress structures on the host cell surface. To expand understanding of the infection cycle of SIRV2, we aimed to functionally characterize gp1, which is a SIRV2 gene with unknown function. The SIRV2_Gp1 protein is highly expressed during early stages of infection and it is the only protein that is encoded twice on the viral genome. It harbours a helix-turn-helix motif and was therefore hypothesized to bind DNA. The DNA-binding behavior of SIRV2_Gp1 was characterized with electrophoretic mobility shift assays and atomic force microscopy. We provide evidence that the protein interacts with DNA and that it forms large aggregates, thereby causing extreme condensation of the DNA. Furthermore, the N-terminal domain of the protein mediates toxicity to the viral host Sulfolobus. Our findings may lead to biotechnological applications, such as the development of a toxic peptide for the containment of pathogenic bacteria, and add to our understanding of the Rudiviral infection cycle
Structure and assembly mechanism of virus-associated pyramids by Tessa Quax( )

1 edition published in 2017 in English and held by 2 WorldCat member libraries worldwide

Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea by Robert Knüppel( )

1 edition published in 2021 in English and held by 2 WorldCat member libraries worldwide

Abstract: Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis
An ascillating MinD protein determines the cellular positioning of the motility machinery in archaea by Phillip Nußbaum( )

1 edition published in 2020 in English and held by 2 WorldCat member libraries worldwide

Audience Level
Audience Level
  Kids General Special  
Audience level: 0.95 (from 0.95 for Viral hija ... to 0.97 for An ascilla ...)

Alternative Names
Quax, Tessa E. F.

Tessa E F Quax wetenschapper