WorldCat Identities

Cusinato, Lucy (1991-....).

Overview
Works: 2 works in 3 publications in 2 languages and 4 library holdings
Roles: Author
Publication Timeline
.
Most widely held works by Lucy Cusinato
Chimie de surface de nanoparticules de ruthénium : approches théoriques by Lucy Cusinato( Book )

2 editions published in 2016 in French and held by 2 WorldCat member libraries worldwide

Surface chemistry of small metallic nanoparticles ( ~ 1 nm), mainly ruthenium or ruthenium alloys, has been studied at the DFT level via a theoretical approach. This study is supported by the development of analytical tools, that allow to investigate structural, electronic and thermodynamical properties of those nanoparticles. A first part is dedicated to the structural properties of metallic nanoparticles. Morphological diversity is highlighted as well as the necessity of being able to desing reliable models. The refinement of structural models is made possible via the combined use of generic nanoparticles structure design and of the reverse Monte Carlo method in order to fit experiments. Electronic or morphologic descriptors such as d-band center or generalized coordination number are applied to those nanoparticles, in relationship with their adsorption possibilities and, to a larger extent, with the Sabatier principle. An electronic descriptor of the chemical bond (COHP) is applied to the considered nanoparticles in order to show differences between structures, as well as the interactions within the metallic core and between the core and surface species. Finally, adsorption of surface species is studied. A single ligand probe is used to spot favorable adsorption sites, then higher coverages are considered so as to test its influence on the adsorption of extra ligands, and to investigate the effect of surface ligands on the metallic core morphology. To do this, thermodynamical properties of adsorbed systems have been modeled by taking into account the effect of pressure and temperature on the nanoparticles relative stabilities via ab initio thermodynamics. The same approache was eventually applied to H2/CO coadsorbed at ruthenium and rhenium nanoparticles surface, in the context of the Fischer-Tropsch synthesis, allowing to propose a thermodynamically favorable intermediate for this reaction. Preliminary study of this reaction, of high chemical and societal interest, conclude this manuscript. The combined use of structural, electronic and thermodynamical approaches widens the overview on some aspects of ruthenium nanoparticles chemistry
Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection by Ferry A. A Nugroho( )

1 edition published in 2019 in English and held by 2 WorldCat member libraries worldwide

Hydrogenair mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metalpolymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering
 
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.95 (from 0.94 for Chimie de ... to 0.97 for Metal-poly ...)

Languages